When performing finite element analysis using materials with porosity the porosity shows different mechanical properties from the existing mechanical properties of the existing base materials. In this study the equivalent properties were calculated and verified by applying the representative volume element (RVE) method and assuming that the material with porosity is a 2D orthotropic material. In case of finite element analysis using porous material or composite material, it is inefficient to perform the analysis through material modeling. Based on the element volume and element stress values derived using the finite element analysis program, the representative stress values and elastic modulus matrix were calculated using Python. In addition, equivalent properties were derived using the calculated elastic modulus matrix. The pores were simulated by etching a thin plate specimen made of STS304 material in a certain pattern, and the elastic modulus and Poisson's ratio were measured through a UTM and compared with simulation results. It was confirmed that an error of 7.028% for elastic modulus and 10% for Poisson's ratio occurred, and through this, the validity of this simulation was verified.
The demand for materials with porosity is steadily increasing and the need for porous materials is increasing in fields such as chemical engineering and energy storage. In order to minimize trial and error, verifying design validity through finite element method at the design stage has the advantage to verify design validity with low cost. However there are limitations in finite element analysis using porous materials. In this study calculating the equivalent mechanical properties reflecting the porosity was carried out, and the first step was the isotropic elasticity in plane stress condition. The equivalent elastic modulus and the equivalent Poisson's ratio were derived through simulation. Assuming that the voids exist in a two-dimensional symmetrical shape and a constant distribution, the unit cell was defined and the equivalent mechanical properties were calculated. The specimen with same condition were measured through a universal test machine (UTM), the elastic modulus and Poisson's ratio were measured. The similarity between the value obtained through the simulation and the value measured through the experiment was under 5%, so the validity of this simulation was verified. With this result, FEM with porous materials will be used for design.
동하중을 고려하는 구조해석은 전산자원과 시간측면에서 상당한 어려움이 따르기 때문에 외력을 이상적인 정하중으로 가정하는 것이 일반적이다. 그러나 정하중 조건으로 해석된 결과는 구조물의 안전설계 측면에서 충분한 신뢰를 주기 어렵다. 최근에는, 동하중의 영향을 받는 구조물의 효과적인 구조해석을 위해 동하중을 등가정하중으로 변환하는 기법이 제안되어 왔다. 이 기법은 최적화를 통해 구속조건을 만족하는 최소의 등가정하중을 구하는데, 구속조건은 임계시간의 변위를 사용하고, 등가정하중 분포 자유도는 경험적으로 선정하여 왔다. 그러나 안전설계 관점에서는 응력 구속조건을 적용하는 것이 타당하며, 경험적 자유도 선정은 몇 개의 자유도에 과도한 하중이 부과되거나 구조물의 거동에 영향력이 없는 자유도들이 선정될 가능성이 있다. 본 연구에서는 등가응력 구속조건을 고려하는 등가정하중 최적화 방법을 제안하고, 축소시스템 개념을 도입한 주자유도, 구속조건 요소 자유도, 외부하중 자유도로 구성되는 등가정하중 분포 자유도의 구성방법을 제안한다. 수치예제에서는 제안된 방법으로 구해진 등가정하중을 사용하여 등가응력을 구하고 동하중 해석 결과와 비교함으로써 제안된 방법을 통한 구조해석 방법이 구조안전성 측면에서 타당함을 보인다.