공간 해상도 1m 이하의 고해상도 원격 탐사 영상의 민간 활용이 활발해 짐에 따라, 이를 위한 전문 분야 별 영상 분석 방법의 개발 요구가 증가하고 있다. 다양한 영상분석 기법 중에, 주변 화소들간의 공간 분포 관계에 의해 특성이 결정되는 텍스처 영상의 분석은 이러한 목적을 위한 유용한 영상 분석 방법 중 하나이다. 이 연구에서는 원시 영상으로부터 GLCM 알고리즘에 의해 생성된 텍스처 영상에 대해서 방향 인자, 마스킹 커널의 크기, 변수의 종류에 따른 결과를 비교, 분석한 뒤 각각의 결과 영상의 지형공간 특성 분석의 적용성에 대하여 알아보았다. 또한 원시 영상과 텍스처 영상에서 특성 정보를 포함하는 템플레이트를 설정하고 이를 기준으로 반복적인 패턴을 자동으로 검색하는 템플레이트 정합 프로그램을 구현하여 이를 원시 영상과 텍스처 영상에 적용하였고, 처리 결과에 기초하여 향후 적용 가능성을 검토하였다. 이 연구의 결과는 일정한 패턴으로 나타나는 지구과학적인 지형 특성이나 고해상도 위성영상 정보를 이용한 인공 지형지물의 파악 및 분석에 효과적으로 적용될 수 있을 것으로 예상된다.
In this paper, we introduce the methodology that utilizes deep learning-based front-end to enhance underwater feature matching. Both optical camera and sonar are widely applicable sensors in underwater research, however, each sensor has its own weaknesses, such as light condition and turbidity for the optic camera, and noise for sonar. To overcome the problems, we proposed the opti-acoustic transformation method. Since feature detection in sonar image is challenging, we converted the sonar image to an optic style image. Maintaining the main contents in the sonar image, CNN-based style transfer method changed the style of the image that facilitates feature detection. Finally, we verified our result using cosine similarity comparison and feature matching against the original optic image.