Soy isoflavones have been reported to possess many physiological activities such as antioxidant activity and inhibition of cancer cell proliferation. This study investigated the photoprotective effects of soybean extract in human fibroblast cell line and hairless mice model. Human fibroblast was treated with soybean extract before and after ultraviolet B (UVB; 290-302 nm) irradiation. In the soybean extract treated group, the cells showed better resistance to ultraviolet (UV) than control group. The amount of type I collagen recovered from the soybean treated group was higher than the vehicle group exposed to UV-induced damage. Moreover, increased expression of metalloproteinases-1 as a result of UV irradiation was suppressed by the soybean extract. Female mice were orally administered soybean extract and irradiated with UVB light for 8 weeks. The effects of the soybean extract on the skin appearance, collagen deposition and epidermal thickness in the UV-damaged mouse skin were analyzed using histopathological methods. In soybean extract treated group, the skin had a better morphology than that of the control group. Furthermore, the amount of type I collagen was increased and overexpression of MMP-1 was reduced in the soybean extract group compared to vehicle group. Additionally, up-regulation of pro-inflammatory cytokines induced by UV irradiation was suppressed by dietary soybean extract treatment. It appears that soybean extract had a photoprotective effect, including anti-aging and anti-inflammatory effect, from UV-induced damage in not only human fibroblast, but also hairless mice. We confirmed that these effects were possibly due to promotion of collagen synthesis and inhibition of MMP-1 expression.
Functional cosmetics are intensively investigated for the effectiveness of skin whitening, anti-aging and slimming. For enhancing the effectiveness, active ingredients should be delivered into the cell in the dermis. The amounts of penetration of caffeine and Arbutin® were tested, in vitro, using Franz diffusion cell. Oil-in-water emulsions were used for the vehicles of the transport. For the measuring the amounts of active ingredients delivered into the dermal skin, tape stripping was done after finishing the penetration experiments. The amounts of delivered caffeine were 8.45± 1.26ug/ml before tape stripping and 3.45± 1.80ug/ml after tape stripping, however, the amounts of delivered Arbutin® was quite small to detect. From now on, proper vehicles are considered for enhancing the delivery of Arbutin® Hairless mouse skin was compared with pig skin as a transdermal delivery membrane. The aspects of delivery were similar, but the amount of delivered ingredients using pig skin was larger than that of using hairless mouse skin. Therefore, the pig skin would be considered as a membrane for drug delivery experiments.