With the recent trend to construct high-rise and large buildings, the steel structure system is widely used, but there are not enough studies on the vibration characteristics of the iFLASH system on the buildings. Therefore, in this study, we performed a vibration measurement of the natural frequency and damping ratio in the stage of iFLASH panel, composit, frame completion and cladding completion. The result findings suggest that the damping ratio after the cladding completion has a greater effect on the reduction of the damping ratio, than the stage after the frame completion.
iFLASH System is new structural floor system which consists of sandwich panels filled with nano-composite. The nano-composite has low specific gravity and high bonding strength with steel plates. The bonding strength is one of important factors for structural performance of iFLASH System and it can further be improved by surface preparation such as blast metal cleaning. However, using none blast steel plates is recommended since surface preparation generates additional fabrication time and cost. In this study, a bonding strength test and bending experiment were conducted to check feasibility of applying none blast steel plates to iFLASH System. Moreover, stress in bonding plane between steel plates and nano-composite was analytically evaluated by finite element method. Consequently, flexural capacity of the specimen was 11% higher than theoretically calibrated value and its flexural behavior was structurally efficient without defect of bonding.