검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2024.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Forbush decreases (FDs), as the transient event of decreasing cosmic ray (CR) intensity, show the main phase of a sudden decrease within approximately one day and the recovery phase over several days. FDs are associated with abrupt solar wind events such as interplanetary shocks (IP shocks) and magnetic clouds. FD generation is explained by drift due to the magnetic field strength and by diffusion caused by magnetic turbulence. The FDs and the IP shocks from 1998 to 2004 in the solar maximum period were chosen to determine a more effective generation of FD between drift and diffusion. Seventy FDs with a CR variation of more than 3.0% and a minimum value of less than −1.5% were selected using Oulu neutron monitor data. The Advanced Composition Explorer satellite identified 292 IP shocks and we divided them into two sections: the pre-sheath region ahead of the shock front and the post-sheath region behind the shock front. The magnetic field strength, magnetic turbulence, solar wind speed, and solar wind turbulence of the post-sheath regions were analyzed. Most (62/70) of the FDs were associated with the post-sheath regions of the IP shocks. The important factors that generated the FDs were drift by the large physical properties in the post-sheath regions and diffusion by the strong turbulence in the post-sheath regions. The increase in the magnitude of interplanetary magnetic field (IMF) shows larger in the IP shocks associated with FD (2.33 times) than in those not associated with an FD (1.70 times) between the pre-sheath and post-sheath regions. On the other hand, the increase in turbulence of IMF was the same for IP shocks associated with an FD and not associated with an FD. Although it was difficult to determine the dominant factor for the generation of FDs, the present study suggested that the drift by the magnetic field strength may play a more significant role than the diffusion by the magnetic turbulence.
        4,000원
        4.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        It is investigated quantitative relations between the magnetic storm magnitude and the solar wind parameters such as the Interplanetary Magnetic Field (hereinafter, IMF) magnitude (B), the southward component of IMF (Bz), and the dynamic pressure during the main phase of the magnetic storm with focus on the role of the interplanetary shock (hereinafter, IPS) in order to build the space weather fore-casting model in the future capable to predict the occurrence of the magnetic storm and its magnitude quantitatively. Total 113 moderate and intense magnetic storms and 189 forward IPSs are selected for four years from 1998 to 2001. The results agree with the general consensus that solar wind parameter, especially, Bz component in the shocked gas region plays the most important role in generating storms (Tsurutani and Gonzales, 1997). However, we found that the correlations between the solar wind parameters and the magnetic storm magnitude are higher in case the storm happens after the IPS passing than in case the storm occurs without any IPS influence. The correlation coefficients of B and BZ(min) are specially over 0.8 while the magnetic storms are driven by IPSs. Even though recently a Dst prediction model based on the real time solar wind data (Temerin and Li, 2002) is made, our correlation test results would be supplementary in estimating the prediction error of such kind of model and in improving the model by using the different fitting parameters in cases associated with IPS or not associated with IPS rather than single fitting parameter in the current model.
        4,000원
        5.
        2002.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        From the data of solar wind observation by ACE spacecraft orbiting the Earth-Sun Lagrangian point, we selected 48 forward interplanetary shocks(IPSs) occurred in 2000, maximum solar activity period. Examining the profiles of solar wind parameters, the IPSs are classified by their shock drivers. The significant shock drivers are the interplanetary coronal mass ejection(ICME) and the high speed stream(HSS). The IPSs driven by the ICMEs are classified into shocks driven by magnetic clouds and by ejectas based on the existence of magnetic flux rope structure and magnetic field strength. Some IPSs could be formed as the blast wave by the smaller energy and shorter duration of shock drivers such as type II radio burst. Out of selected 48 forward IPSs, 56.2% of the IPSs are driven by ICME, 16.7% by HSS, and 16.7% of the shocks are classified into blast-wave type shocks. However, the shock drivers of remaining 10% of the IPSs are unidentified. The classification of the IPSs by their driver is a first step toward investigating the critical magnitudes of the IPS drivers commencing the magnetic storms in each class.
        4,000원