우리나라에서 공용중인 시설물은 총 172,111개로 집계되고 있으며, 그 중 교량은 34,199개로 사회 기반시설 중 가장 많은 비중을 차지한다. 이러한 교량은 공용하중, 온도, 습도 등에 의해 거더간 신축 량이 발생하게 되고 신축량 발생으로 인한 유간거리에 대해 차량의 통행 안정성 및 주행성 확보를 위 한 신축이음장치를 설치하게 된다. 신축이음장치를 설치하여 차량의 통행 안정성 및 주행성을 확보할 수 있지만 누수 및 퇴적물 낙하 등을 직접적으로 방지하지 못하여 고무지수재를 별도로 설치하게 된 다. 하지만 이러한 고무지수재는 다양한 원인에 의해 쉽게 손상이 발생한다. 손상된 고무지수재를 통 해 거더의 부식, 교량하부 인명사고 등 다양한 2차 피해가 발생할 수 있다. 피해방지를 위한 교량의 유지관리를 지속적으로 수행하고 있지만 고무지수재 특성상 지속적인 교체가 불가피한 실정이다. 따라 서 본 연구에서는 기존 신축이음장치에 활용되는 고무지수재의 문제점을 해결하기 위하여 초탄성 형 상기억합금을 활용한 새로운 지수재 개발 연구를 수행하였다. 이에 대해 초탄성 형상기억합금 지수재 와 고무지수재에 대한 유한요소해석을 수행하고 비교 및 분석하였으며, 하중 제거 후 원형으로 복원되 는 효과를 통해 지속 사용 가능한 지수재 연구를 검증하였다.
PURPOSES : With the recent enactment of the 「Framework Act on Sustainable Infrastructure Management」 in Korea, the establishment of mid- to long-term management plans for social infrastructure and the feasibility evaluation of maintenance projects have become mandatory. To this end, the life cycle cost analysis is essential. However, owing to the absence of a deterioration model, trials and errors are in progress.
METHODS : In this study, a deterioration model was established for bridges, which are the representative social infrastructures of roads, particularly for expansion joints that can cause enormous damage to not only the superstructure but also the substructure. The deterioration model was classified into rubber and steel, based on the material of the expansion joint. The analysis used the inspection and climate data conducted in Korea over the last 12 years. The Bayesian Markov Hazard model was applied as the analysis technique.
RESULTS : The average life expectancy by type of expansion joint was analyzed to be 8.9 and 6.6 years for rubber and steel, respectively. For probabilistic life cycle cost analysis, the probability distribution of the life expectancy, validity range by confidence level, and Markov transition probability matrix were presented.
CONCLUSIONS : In this study, the basis for deterministic and probabilistic life cycle cost analysis of expansion joints was laid. In future studies, it will be necessary to establish a standardized deterioration model for all types of infrastructure, including all bridge elements.
PURPOSES : In this study, the propriety of expansion joint spacing of airport concrete pavement was examined by using weather and material characteristics.
METHODS: A finite element model for simulating airport concrete pavement was developed and blowup occurrence due to temperature increase was analyzed. The critical temperature causing the expansion of concrete slab and blow up at the expansion joint was calculated according to the initial vertical displacement at the joint. The amount of expansion that can occur in the concrete slab for 20 years of design life was calculated by summing the expansion and contraction by temperature, alkali-silica reaction, and drying shrinkage. The effective expansion of pavement section between adjacent expansion joints was calculated by subtracting the effective width of expansion joint from the summation of the expansion of the pavement section. The temperature change causing the effective expansion of pavement section was also calculated. The effective expansion equivalent temperature change was compared to the critical temperature, which causes the blowup, according to expansion joint spacing to verify the propriety of expansion joint applied to the airport concrete pavement.
RESULTS: When an initial vertical displacement of the expansion joint was 3mm or less, the blowup never occurred for 300m of joint spacing which is used in Korean airports currently. But, there was a risk of blow-up when an initial vertical displacement of the expansion joint was 5mm or more due to the weather or material characteristics.
CONCLUSIONS: It was confirmed that the intial vertical displacement at the expansion joint could be managed below 3mm from the previous research results. Accordingly it was concluded that the 300m of current expansion joint spacing of Korean airports could be used without blowup by controling the alkali-silica reaction below its allowable limit.