검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2020.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We analyze high dispersion emission lines of the symbiotic nova AG Pegasi, observed in 1998, 2001, and 2002. The Hα and Hβ lines show three components, two narrow and one underlying broad line components, but most other lines, such as HI, HeI, and HeII lines, show two blue- and red-shifted components only. A recent study by Lee & Hyung (2018) suggested that the double Gaussian lines emitted from a bipolar conical shell are likely to form Raman scattering lines observed in 1998. In this study, we show that the bipolar cone with an opening angle of 74°, which expands at a velocity of 70 km s-1 along the polar axis of the white dwarf, can accommodate the observed double line profiles in 1998, 2001, and 2002. We conclude that the emission zone of the bipolar conical shell, which formed along the bipolar axis of the white dwarf due to the collimation by the accretion disk, is responsible for the double Gaussian profiles.
        4,000원
        3.
        2008.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        곰피추출물의 CCD-986sk cell line monolayer (human fibroblast, KCBL-21947)에 대한 피부세포 생리활성효과를 측정하고, 또한 곰피추출물의 Clone M-3 mouse melano-cyte cell line에 대한 melanin formation 저해효과를 측정하기 위해 in vitro레벨에서 실험을 실시하였다. 곰피는 다년생 갈조류의 일종으로 이 종은 한국 연안해역에서 중요한 1차생산자의 역할을 담당하고 있는
        4,000원
        4.
        2002.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Almost half of primeval galaxies show P-Cygni type profiles in the Lyα emission line. The main underlying mechanism for the profile formation in these systems is thought to be the frequency re-distribution of the line photons in expanding scattering media surrounding the emission source. A Monte Carlo code is developed to investigate the Lyα line transfer in an optically thick and moving medium with a careful consideration of the scattering in the damping wings. Typical column densities and expansion velocities of neutral hydrogen investigated in this study are NH1 ~10 17-20 cm -2 and ΔV ~ 100 km s-1. We investigate the dependence of the emergent profiles on the kinematics and on the column density. Our numerical results are applied to show that the damped Lyα absorbers may possess an expanding H I supershell with bulk flow of ~ 200 km s-l and H I column density NH1 ~ 10 19 cm -2. We briefly discuss the observational implications.
        4,200원
        7.
        1996.12 KCI 등재 SCOPUS 구독 인증기관·개인회원 무료
        We have solved the radiative transfer problem using a Sobolev approximation with an escape probability method in case of the supersonic expansion of a stellar envelope to an ambient medium. The radiation from the expanding envelope turns out to produce a P-Cygni type profile. In order to investigate the morphology of the theoretical P-Cygni type profile, we have treated V∞,Vsto,β (parameter for the velocity field), M and є (parameter for collisional effect) as model parametrs. We have found that the velocity field and the mass loss rate affect the shapes of the P-Cygni type profiles most effectively. The secondarily important factors are V∞, Vsto. The collisional effect tends to make the total flux increase but not so .much in magnitude. We have infered some physical parameters of 68 Cyg, HD24912, and ℇ persei such as V∞, M from the model calculation, which shows a good agreement with the observational results.
        8.
        1996.12 KCI 등재 SCOPUS 구독 인증기관·개인회원 무료
        To understand the dynamical structures of stellar wind bubble, one and two-dimensional calculations has been performed. Using FCT Code with cooling effects and assuming constant mass loss rate and ambient medium density, we could divide stellar winds into the regime of slow and fast winds. The slow wind driven bubble shows initially radiative and becomes partially radiative bubble in which shocked stellar wind zone is still adiabatic. In contrast., the fast wind driven bubble shows initially fully adiabatic and becomes adiabatic bubbles with radiative outer shell. We also determine analytically the onset of thin-shell formation time in case of fast wind driven bubble with power-law energy injection and ambient density structure. We solve the line transfer problem with numerical results in order to calculate line profile of [OIII] forbidden line.
        9.
        1996.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We determine analytically the onset of thin-shell formation time of fast wind bubble with power-law energy injection Ein=E0ts Ein=E0ts , and power-law ambient density structure, ρ0(r)= ¯ ρ(r/ ¯ r)−ω ρ0(r)=ρ¯(r/r¯)−ω . Thin-shell formation time, tsf tsf can be estimated by minimizing the total time elapsed before the complete cooling of shocked gas. For uniform medium (ω=0 ω=0 ) and constant energy injection (s = 1), the onset of shell formation is found to be at tsf=5.2×103yr tsf=5.2×103yr , which agrees Quite well with the results of FCT 1D numerical calculation. We solve the line transfer problem with previous result derived by numerical calculation in order to calculate line profile of [OIII] (λ=5007\AA) forbidden line. In general, radiative outer shell causes the formation of double peaked line profile. Each peak corresponds to approaching and receeding shells with large velocities. Our line profiles show good agreements with observation of expanding shell structure.
        5,100원
        11.
        1996.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have solved the radiative transfer problem using a Sobolev approximation with an escape probability method in case of the supersonic expansion of a stellar envelope to an ambient medium. The radiation from the expanding envelope turns out to produce a P-Cygni type profile. In order to investigate the morphology of the theoretical P-Cygni type profile, we have treated V∞, Vsto, β(parameters for the velocity field), it and E(parameter for collisional effect) as model parameters. We have investigated that the velocity field and the mass loss rate affect the shapes of the P-Cygni type profiles most effectively. The secondarily important factors are V∞, Vsto. The collisional effect tends to make the total flux increased but not so much in magnitude. We have infered some physical parameters of 68 Cyg, HD24912, and ℇ persei such as V∞, M from the model calculation, which shows a good agreenment with the observational results.
        4,500원