The functional roles of plant extracts have been investigated for the treatment of various diseases including subfertility. Recent studies have highlighted the benefits of ashwagandha extract (AE) in enhancing sperm production, boosting testosterone levels, and lowering reactive oxygen species (ROS) levels in mammals. The current study is to examine the effects of the addition of AE to liquid boar semen on sperm quality during storage and its potential application in assisted reproductive technology. A hot water extract of ashwagandha was prepared from the dried powder of ashwagandha roots. Boar spermatozoa were stored in Beltsville thawing solution (BTS) at 17℃ for 5 days, with various concentrations of AE (1–50 mg/mL). During storage, motility, viability, acrosomal integrity and ROS of boar spermatozoa were examined. The results have shown that sperm stored in BTS with varying quantities of AE ranging from 1–20 mg/mL exhibited higher motility compared to those without AE (control) or with 50 mg/mL AE for 5 days. Similarly, sperm viability was better maintained in sperm treated with 1–20 mg/mL AE. Moreover, sperm stored in BTS with AE led to significantly higher acrosomal integrity and chromatin stability rates than sperm stored without AE. Notably, intracellular ROS levels significantly decreased in sperm stored in BTS with AE. Particularly, spermatozoa stored at 10 mg/mL AE exhibited an effective reduction in ROS during storage. These findings suggest the potential role of AE as an additive during sperm storage maintains sperm quality and can be used during subfertility treatment in both animals and humans.
The objective of this study was to investigate the effect of storage time on fresh boar semen in Androhep and Beltsville Thawing Solution (BTS). Boar semen samples extended in each extender were stored at 17℃ up to 4 days. Sperm motility kinematics was evaluated by computer assisted sperm analyzer (CASA) and capacitation status by chlortetracycline (CTC)/Hoechst 33258 staining. Sperm motility (%) was not decreased during storage in BTS and Androhep. No significant difference between extenders was observed. Only significant differences in kinematic parameters on linearity during storage were found. The percentage of dead sperm significantly decreased during storage (p<0.05). Also the percentage of noncapacitated, capacitated, and acrosome-reacted sperm significantly modified during storage (p<0.05). However, there was no significant difference between extenders except proportion of capacitated sperm. This finding supported that modification in these parameters was not significantly different between extenders during this short-term storage. Our finding strongly indicated that both Androhep and BTS maintained favorable conditions for motility, motility kinematics, and capacitation status during short-term storage. Despite modifications in some parameters were apparent during sperm storage in extenders, these may not affect the fertilizing capacity of boar semen.
본 연구는 정액의 보존 기간 동안 정액의 질적 변화를 알아보고자 시행하였다. 돼지 정액을 Beltsville Thawing Solution (BTS)에 희석한 후 17'C 에서 5일 동안 보존하였다. 보존 기간 동안 정자의 운동성(%)과 linearity는 3일째부터 유의하게 감소하였으나, 다른 운동 역학 변수에서는 유의적 변화를 나타내지 않았다. 또한, 5일 동안 정액을 보존할 경우 첨체의 온전성에도 변화가 없었다. 그러나 제 4일째부터 첨체 변화가 야기된 정자는 유의적으로 증가하였으나, 수정능 획득이 일어난 정자는 유의적으로 감소하였다. 정액의 보존 기간 동안 첨체의 온전성의 유의적 변화가 없었다. 즉, 보존 기간 3일동안 정자의 질적 운동성 및 첨체 온전성에는 유의적인 변화가 없었으므로 상업용 돼지 액상정액은 17'C 에서 적어도 3일간 수정능력을 만족스럽게 유지함을 보여준다.