검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 22

        7.
        2009.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We estimate the enclosed mass profile in the central 10 pc of the Milky Way by analyzing the infrared photometry and the velocity observations of dynamically relaxed stellar population in the Galactic center. HST/NICMOS and Gemini Adaptive Optics images in the archive are used to obtain the number density profile, and proper motion and radial velocity data were compiled from the literature to find the velocity dispersion profile assuming a spherical symmetry and velocity isotropy. From these data, we calculate the the enclosed mass and density profiles in the central 10 pc of the Galaxy using the Jeans equation. Our improved estimates can better describe the exact evolution of the molecular clouds and star clusters falling down to the Galactic center, and constrain the star formation history of the inner part of the Galaxy.
        4,000원
        10.
        2001.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        대한해협과 동중국해에서 1985년과 1986년에 관측한 수온, 염분자료를 사용하여 수괴를 분석하였다. 대한해협과 동중국해 수심 50m에서의 수괴 분포 특성은, 겨울과 봄철에는 쿠로시오 해수(수괴 K) 및 쿠로시오계 혼합수(수괴I), 여름과 가을철에는 대륙 연안수의 영향을 많이 받은 혼합수(수괴 I∼IV)의 수괴분포가 넓게 나타났다. 겨울과 봄에 수심 loom의 동중국해는 주로 쿠로시오 해수(수괴 K) 및 쿠로시오계 혼합수(수괴 I)가 넓게 분포하고 있었다. 여름에는 혼합수(수괴 I∼III)가 널리 나타나 연중 여름에 가장 혼합이 많이 된 수괴가 분포하고 있는 것이 특징이었다. 가을에는 쿠로시오계 혼합수(수괴 I)가 주요 수괴였다. 대한해협에서는 겨울과 봄에는 쿠로시오 해수(수괴 K), 여름과 가을에는 혼합수(수괴 I∼IV)가 주로 분포하고 있었다. 겨울과 봄철에 대기로부터의 냉각에 의한 보정을 하면,쿠로시오 해수(수괴 K)의 분포해역이 줄어든 대신에 쿠로시오계 혼합수(수괴 I)의 분포 해역이 늘어났다. 즉, 동중국해와 대한해협에서 겨울과 봄에 주로 쿠로시오 해수(수괴 K)가 분포하는 것처럼 보이지만,실제는 약간 변질된 쿠로시오계 혼합수(수괴 I)가 넓게 분포하고 있는 것이다. 계절별 해황특성으로 여름철에 표층 저밀도수의 분포가 대한해협과 오끼나와 쪽으로 향하는 두 갈래 혀 모양의 형태를 나타내고 있었다. 이것은 중국대륙 연안수와 혼합된 저밀도 표층수의 흐름이 대한해협과 동중국해 동남쪽으로 향하고 있는 것으로 사료된다.
        5,200원
        11.
        1996.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The case for a massive black hole in the center of the Galaxy is reassessed using improved modeling techniques and observational data. A dark mass of ~2 ×10 6 M⊙ is present within 0.2 pc of the Galactic center. However, the available data can be modeled, without appealing to a massive black hole, using an extended distribution of dark stellar remnants (neutron stars and stellar mass black holes) provided that the stellar initial mass function in the central parsec is deficient in stars less massive than ~1 M⊙. Such a situation may be a natural consequence of repeated gas build-up followed by starbursts in the central region. A clear distinction between this and the massive central black hole model cannot be made using red giant tracers outside 0.2 pc due to uncertainties in the radial velocity dispersion distribution. The cluster of massive early-type emission-line stars in the central parcsec more effectively probe the mass distribution close to Sgr A *, but their small number and partial rotational support complicate mass determinations. Proper motion determinations for stars within 0.5' of Sgr A * may be the most effective means of unambiguously determining the mass distribution in the immediate vicinity of the Galactic center.
        3,000원
        12.
        1990.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The tidal radii of globular clusters reflect the tidal field of the Galaxy. The mass distribution of the Galaxy thus may be obtained if the tidal fields of clusters are well known. Although large amounts of uncertainties in the determination of tidal radii have been obstacles in utilizing this method, analysis of tidal density could give independent check for the Galactic mass distribution. Recent theoretical modeling of dynamical evolution including steady Galactic tidal field shows that the observationally determined tidal radii could be systematically larger by about a factor of 1.5 compared to the theoretical values. From the analysis of entire sample of 148 globular clusters and 7 dwarf spheroidal systems compiled by Webbink (1985), we find that such reduction from observed values would make the tidal density (the mean density within the tidal radius) distribution consistent with the flat rotation curve of our Galaxy out to large distances if the velocity distribution of clusters and dwarf spheroidals with respect to the Galactic center is isotropic.
        4,000원
        14.
        1989.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Luminosity profile of the late type spiral galaxy NGC 2403 was obtained using the PDS scan of the plate. Some physical parameters (scale length, total magnitude, central brightness, disk to bulge ratio and concentric indices) were calculated from the brightness distribution. Total mass and the mass to luminosity ratio were estimated from the fitting of various mass models.
        4,200원
        15.
        1975.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Densities of the three constituent spheroids of the same eccentricity as our earlier model of the Galaxy are assumed to be given by an analytical form of ρ i (r)= k i e − m i r u i , where k i , m i , and α i are obtained by comparing with the results of the previous model. Using three values of ρ i (r) the galactic rotation curve, mass of each spheroid and the whole Galaxy are calculated, and the three dimensional density distribution in the Galaxy is also obtained. The calculated rotation curve of the model Galaxy is in good agreement with the observed curve, and the shape of the cross section of the model Galaxy given by the computed density is very similar to the inferred shape of the spiral galaxies.
        4,000원
        16.
        1975.12 KCI 등재 SCOPUS 구독 인증기관·개인회원 무료
        An improved version of the galatic mass distribution has been derived by increasing the number of shells in each spheroid of our earlier model. It is found that the increase of the number of the shell improves the model considerably, thus making it agree far better with observations.
        17.
        1973.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A simple model of the galactic mass distribution consisting of one sphere and two spheroids with different eccentricities is considered. The resulting model is found to be consistent with the recent observations of the galactic rotation as well as suggested shape of the Galaxy.
        4,000원
        18.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        Aerosol mass size distributions were investigated at 865 m high the of Jirisan national park. A nanosampler cascade impactor was used to collect aerosols. The atmospheric aerosol particles had a unimodal mass size distribution, which peaked at 0.5–1.0 μm, and a mass aerodynamic diameter of 1.13 μm. The annual average concentrations of TSP, PM10, PM2.5, PM1, PM0.5 and PM0.1 were 20.9 μg/m3, 19.3 μg/m3, 14.9 μg/m3, 10.7 μg/m3, 5.3 μg/m3, 1.2 μg/m3, respectively. TSP concentrations were below 30 μg/m3 during the sampling period. On average PM10, PM2.5, PM1, PM0.5 and PM0.1 made up 0.91, 0.70, 0.41, 0.19 and 0.07 of TSP, respectively. The annual average of PM2.5/PM10 ratio was 0.77.
        19.
        2015.05 KCI 등재 서비스 종료(열람 제한)
        Atmospheric aerosol particles were investigated at GNTECH university in Jinju city. Samples were collected using the Nanosampler period from January to December 2014. The Nanosampler is a 6 stage cascade impactor(1 stage : > 10 μm, 2 stage : 2.5~10 μm, 3 stage : 1.0~2.5 μm, 4 stage : 0.5~1.0 μm, 5 stage : 0.1~0.5 μm, back-up : < 0.1 μm) with the stages having 50% cut-off ranging from 0.1 to 10 μm in aerodynamic diameter. The mass size distribution of Atmospheric aerosol particles was unimodal with peak at 1.0~2.5 μm or 0.5~1.0 μm. The annual average concentrations of TSP, PM10, PM2.5, PM1, PM0.5 and PM0.1 were 44.0 μg/m3, 40.3 μg/m3, 31.4 μg/m3, 18.0 μ g/m3, 8.2 μg/m3, 3.0 μg/m3, respectively. On average PM10, PM2.5, PM1, PM0.5 and PM0.1 make up 0.91, 0.70, 0.41, 0.19 and 0.07 of TSP, respectively. The annual average of PM2.5/PM10 ratio was 0.77.
        20.
        2014.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The uneven mass distribution of the Moon highly perturbs the lunar spacecrafts. This uneven mass distribution leads to peculiar dynamical features of the lunar orbiters. The critical inclination is the value of inclination which keeps the deviation of the argument of pericentre from the initial values to be zero. Considerable investigations have been performed for critical inclination when the gravity field is assumed to be symmetric around the equator, namely for oblate gravity field to which Earth’s satellites are most likely to be subjected. But in the case of a lunar orbiter, the gravity field of mass distribution is rather asymmetric, that is, sectorial, and tesseral, harmonic coefficients are big enough so they can’t be neglected. In the present work, the effects of the first sectorial and tesseral harmonic coefficients in addition to the first zonal harmonic coefficients on the critical inclination of a lunar artificial satellite are investigated. The study is carried out using the Hamiltonian framework. The Hamiltonian of the problem is cconstructed and the short periodic terms are eliminated using Delaunay canonical variables. Considering the above perturbations, numerical simulations for a hypothetical lunar orbiter are presented. Finally, this study reveals that the critical inclination is quite different from the critical inclination of traditional sense and/or even has multiple solutions. Consequently, different families of critical inclination are obtained and analyzed.
        1 2