본 논문에서는 기저 스크리닝 기반 크리깅 모델(BSKM: Basis Screening based Kriging Model) 생성의 정확도를 높이기 위해 페널티 를 적용한 최대 우도 평가 방법(PMLE : Penalized Maximum Likelihood Estimation)에 대해서 소개한다. BSKM에서 사용하는 기저함 수의 최대 차수와 종류는 그 중요도에 따라서 결정하게 되며, 이때 중요도의 지표는 기저함수에 대한 교차 검증 오차(CVE : Cross Validation Error)로 택한다. 크리깅 모델(KM : Kriging Model) 구성시 최적의 기저함수 조합은 우선 최대 기저함수 차수를 선택하고 개별 기저함수의 중요도를 평가를 하게 된다. 최적 기저함수 조합은 크리깅 모델의 CVE가 최소가 될 때까지 개별 기저함수의 중요도 가 높은 순으로 기저함수를 하나씩 추가하며 찾는다. 이 과정에서 KM은 반복적으로 생성해야 하며, 동시에 데이터 사이의 상관관계 를 나타내는 하이퍼 매개변수(Hyper-parameters)도 최대 우도 평가방법을 통해 계산하여야 한다. 하이퍼 매개변수의 값에 따라 선택 되는 최적의 기저함수 조합이 달라지기 때문에 KM의 정확도에 막대한 영향을 미치게 된다. 정확한 하이퍼 매개변수를 계산하기 위해 서 PMLE 방법을 적용하였으며, Branin-Hoo 함수 문제에 적용하여 BSKM 의 정확성이 개선될 수 있음을 확인하였다.
This study proposes a new parameter estimation approach for the mixture normal distribution. The developed model estimates parameters of the mixture normal distribution by maximizing the log likelihood function using a meta-heuristic algorithm-genetic algorithm (GA). To verify the performance of the developed model, simulation experiments and practical applications are implemented. From the results of experiments and practical applications, the developed model presents some advantages, such as (1) the proposed model more accurately estimates the parameters even with small sample sizes compared to the expectation maximization (EM) algorithm; (2) not diverging in all application; and (3) showing smaller root mean squared error and larger log likelihood than those of the EM algorithm. We conclude that the proposed model is a good alternative in estimating the parameters of the mixture normal distribution for kutotic and bimodal hydrometeorological data.