Unlike somatic cells mitosis, germ cell meiosis consists of two consecutive rounds of divisions that segregate homologous chromosomes and sister chromatids, respectively. The meiotic oocyte is characterized by an absence of centrioles and asymmetric divisions. Centriolin is a relatively novel centriolar protein that functions in mitotic cell cycle progression and cytokinesis. Here, we explored the function of centriolin in meiosis and showed that it was localized to meiotic spindles, and concentrated at the spindle poles and midbody during oocyte meiotic maturation. Unexpectedly, knockdown of centriolin in oocytes with either siRNA or Morpholino micro-injection, did not affect meiotic spindle organization, cell cycle progression, or cytokinesis (as indicated by polar body emission), but led to a failure of peripheral meiotic spindle migration; and symmetric division or large polar body emission. These data suggest that, unlike in mitotic cells, the centriolar protein centriolin does not regulate cytokinesis, but plays an important role in regulating asymmetric division of meiotic oocytes.
동결 과정 중 필수적인 단계중 하나인 냉각(cooling)과 냉각 후 배양시간이 생쥐 난자의 방추체의 형태와 염색체의 배열에 미치는 영향을 알아봄으로서 냉각 후 손상되었던 난자의 방추체와 염색체가 정상적으로 회복하는데 필요한 최적의 배양시간을 알아보기 위해 본 실험을 실시하였다. 생후 4-6주령의 암컷 B6C3Fl 생쥐를 과배란 처리하여 metaphase II상태의 난자를 회수하여 다음과 같이 처리하였다. 대조군은 난자를 냉각처리하지 않았으며 실험군은
Vitrification method is widely used in oocyte cryopreservation for IVF but the birth rates are lower than that of the fresh oocyte. One of the known main reasons is structural instability of meiotic spindle and chromosome systems of mature oocyte. To get the best way for keeping competence of matured oocytes, we studied the best conditions for vitrification focused on equilibration times. The mature oocytes were underwent vitrification with current popular method and analyzed the survival rates, microtubule stability and DNA integrity. The survival rates of recovered oocyte are almost same between groups and are more than 93%. The structural configuration of meiotic spindle was well kept in 10 min equilibration group and the stability rate was almost same with that of control. The chromosomal breakdown was observed in all experimental groups, but the chromosomal stability was higher in 10 min equilibration group than the other groups. The 10 min equilibration group showed best condition compared with the other groups. Based on these results, the equilibration time is one of the key factors in successful keeping for competence of mature oocyte. Although, more fine analysis about the effects of physical stress on oocyte during vitrification is needed to define the optimal condition, it is suggested that the optimal equilibration time to get competent oocyte in mouse is 10 min. Information acquired this study may provide insight into intracellular structural events occurring in human oocytes after vitrification and application for cryopreservation of human oocyte.
Spc25 is a component of the Ndc80 complex which consists of Ndc80, Nuf2, Spc24, and Spc25. Previous work has shown that Spc25 is involved in regulation of kinetochore microtubule attachment, localization of Ndc80, and the spindle assembly checkpoint in mitosis. The role of Spc25 in meiosis remains unknown. Here, we report its expression, localization and functions in mouse oocyte meiosis. The Spc25 mRNA level gradually increased from the GV to MI stage, but decreased by MII during mouse oocyte meiotic maturation. Immunofluorescent staining showed that Spc25 was restricted to the germinal vesicle, and associated with chromosomes during all stages after GVBD. Overexpression of Spc25 resulted in oocyte meiotic arrest, chromosome misalignment and spindle disruption. Conversely, Spc25 RNAi resulted in precocious polar body extrusion and caused severe chromosome misalignment and aberrant spindle formation. Spc25 RNAi affected Ndc80 localization, but Ndc80 RNAi did not affect Spc25 localization.Survivin MO caused Ndc80 dispersion but did not affect localization of Spc25. Our data suggest that Spc25 is required for chromosome alignment, spindle formation, and spindle checkpoint activity through the regulation of Ndc80, but that Spc25 function is independent of survivin during meiosis.