검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 50

        6.
        2023.11 구독 인증기관·개인회원 무료
        The potential use of cost-effective carbon anodes, as an alternative to expensive platinum, in the reduction of oxides within LiCl-Li2O molten salt at elevated cell potentials presents a promising avenue. However, this elevated potential gives rise to the generation of a complex mixture of anodic gases, including hazardous and corrosive species such as chlorine (Cl2), oxygen (O2), carbon monoxide (CO), and carbon dioxide (CO2). In this study, we investigate the influence of applied potential and salt composition on the composition of the generated gas mixture. Real-time gas analysis was conducted during the TiO reduction reaction in the molten salt at 650°C using a MAX-300-LG gas analyzer. Simultaneously, electronic signals, including current, potential, and salt composition, were monitored throughout the oxide reduction process. Additionally, XRD investigations were performed to verify the crystal structure of the resulting products. This research provides valuable insights into optimizing carbon anode-based reduction processes for improved efficiency and safety.
        8.
        2023.05 구독 인증기관·개인회원 무료
        Instead of using expensive platinum, carbon anodes could potentially be utilized in the process of reducing oxides in LiCl-Li2O molten salt at a high cell potential. However, this high potential leads to the generation of a mixture of anodic gases containing toxic and corrosive gases such as chlorine (Cl2), oxygen (O2), carbon monoxide (CO), and carbon dioxide (CO2). To better understand this gas mixture, we conducted real-time analyses of the gases generated on the carbon anode during the TiO reduction reaction in the molten salt at 650°C, using a MAX-300-LG gas analyzer. Our results indicate that the ratio of CO/O2/CO2/Cl2 in the gas mixture is significantly influenced by the composition of the salt, and that removing the sources of oxygen ions in the salt increases the likelihood of generating toxic and corrosive Cl2 gas.
        15.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 zeolitic imidazolate framework-9 (ZIF-9)을 합성하고 poly(ether-b-amide)-1657 (Pebax-1657) 내에 함량을 달리하여 Pebax/ZIF-9 혼합막을 제조한 다음 단일기체 (N2, CO2)를 투과하여 혼합막에 대한 기체 투과 특성을 조사하 였다. 순수 Pebax 막 내에 혼입되는 ZIF-9 함량이 증가함에 따라 N2 투과도는 점차 감소하고, CO2 투과도는 Pebax/ZIF-9 3 wt% 혼합막까지 증가하다가 그 이후의 함량에서는 감소하였다. 그리고 혼합막들 중 Pebax/ZIF-9 3 wt% 혼합막은 극성 기체 인 CO2에 대해 gate-opening 현상이 일어나면서 선택적으로 CO2를 받아들여 가장 높은 선택도 69.3을 보였다. 또한 CO2 투 과도와 CO2/N2 선택도가 모두 증가하여 Robeson upper-bound에 가장 근접하는 결과를 얻었다.
        4,200원
        16.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There is a need for the purification of indoor air owing to a high rate of pollution in today’s world. For this, cabin air filters (CAFs) are widely used, which requires the addition of certain adsorbents to increase the volatile organic compound (VOC) removal efficiency. However, this addition causes high-pressure resistance, which may hamper commercial applications by requiring more energy and negatively affecting fresh air delivery rate. Hence, in this study, a high-performance combined CAF (CCAF) with excellent dust and chemical filtration performance and low differential pressure was prepared using granular activated carbon (GAC)/activated carbon fiber (ACF) mixed medium. The GAC/ACF mixed medium had higher air permeability than the ACF medium of the same weight, and it exhibited similar ultrafine dust filtration performance to the ACF medium without an increase in differential pressure. In addition, the GAC/ACF mixed medium showed excellent gas removal performance without increasing differential pressure by combining the VOC removal characteristics of the GAC and ACF filter media. The improved VOC removal performance of the GAC/ACF mixed medium was due to the hybrid effect of the hierarchical pore structures of the GAC and the nearly uniform pore structures of the ACF, which resulted in a slow and increased gas adsorption by the GAC and rapid gas adsorption of the ACF.
        4,000원
        18.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 PEBAX2533에 합성된 GO와 PEI-GO의 함량을 달리 첨가하여 혼합막을 제조하고 N2와 CO2의 투과 특성을 연구하였다. PEBAX/GO 혼합막의 N2와 CO2 투과도는 전체적으로 GO 함량이 증가할수록 감소하였고, GO 0.3 wt%에서 가장 높은 CO2/N2 선택도 58.9를 보였다. 그리고 PEBAX/PEI-GO 혼합막에서 N2 투과도는 PEI-GO 함량이 증가함에 따라 감소하였고, CO2 투과도는 PEI-GO 함량에 따라 다른 경향을 보였으며 전체적으로 PEBAX/GO 혼합막보다 더 높은 CO2/N2 선택도를 보였다. 특히 PEI-GO 0.3 wt%는 혼합막들 중 가장 높은 CO2/N2 선택도인 73.5를 보이며 Robeson upper bound 위에 위치하는 긍정적인 결과를 얻었다. 이는 본연의 GO 구조에 의한 molecular sieving channel 효과와 CO2에 친화성이 있는 GO의 구조 내에 존재하는 작용기 그리고 GO를 PEI로 개질함으로써 PEI에 결합되어 있는 amine에 의한 효과가 함께 작용했기 때문으로 생각된다.
        4,500원
        20.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Upgraded activated carbons (ACs) are typically synthesized by mixed methods, such as solid–solid mixing and wet impregnation of low-grade ACs with KOH. This study compares the properties of upgraded ACs prepared by different methods using elemental analysis, X-ray photoelectron spectroscopy, N2 adsorption isotherms, and X-ray diffraction. In ACs produced by the solid–solid mixing, the ratio of potassium activator is proportional to the surface area and amount of gas produced. However, in wet impregnated ACs, the potassium ratio exhibits a zero or negative correlation. It is demonstrated that potassium ions in solution are not transferred to K2O and do not contribute to the surface area and pore size, generating less amount and different composition of gases. As such, impregnated ACs exhibit similar surface areas and large pores, regardless of the potassium ratio. The physical properties, such as specific surface areas and pore size distribution, of ACs using wet impregnation were similar to the ACs generated by the water physical activation. It indicated that the KOH does not efficiently act as a chemical activator in the wet impregnation method. Therefore, a certain amount and suitable mixing method of chemical activator play an important role in the property upgrade of ACs.
        4,000원
        1 2 3