검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polymeric carbon nitride (p-C3N4) is a promising platform as a metal-free photo-catalyst for various reactions. The p-C3N4 can be produced by thermal poly-condensation of organic precursors. Their morphological and chemical structures depend on reaction conditions during the poly-condensation. In this study, two p-C3N4 materials are produced by heat treatment of urea under different gaseous conditions with air (urea-derived carbon nitride under air, UCN-A) and N2 (UCN-N), respectively. UCN-A and UCN-N samples are mesoporous materials and show excellent photocatalytic activities for degrading rhodamine B, an organic pollutant, under the irradiation of visible light. The UCN-A shows the better photocatalytic activity than UCN-N. Various characterizations reveal that more porous structures and larger surface areas of UCN-A are reasons for the better photocatalytic performance.
        4,000원
        2.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Rare earth magnets are the strongest type of permanent magnets and are integral to the high tech industry, particularly in clean energies, such as electric vehicle motors and wind turbine generators. However, the cost of rare earth materials and the imbalance in supply and demand still remain big problems to solve for permanent magnet related industries. Thus, a magnet with abundant elements and moderate magnetic performance is required to replace rare-earth magnets. Recently, a”-Fe16N2 has attracted considerable attention as a promising candidate for next-generation non-rare-earth permanent magnets due to its gigantic magnetization (3.23 T). Also, metastable a”-Fe16N2 exhibits high tetragonality (c/a = 1.1) by interstitial introduction of N atoms, leading to a high magnetocrystalline anisotropy constant (K1 = 1.0MJ/m3). In addition, Fe has a large amount of reserves on the Earth compared to other magnetic materials, leading to low cost of raw materials and manufacturing for industrial production. In this paper, we review the synthetic methods of metastable a”-Fe16N2 with film, powder and bulk form and discuss the approaches to enhance magnetocrystalline anisotropy of a”-Fe16N2. Future research prospects are also offered with patent trends observed thus far.
        4,000원
        3.
        2016.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon nitride (SiNx:H) films made by plasma enhanced chemical vapor deposition (PECVD) are generally used as antireflection layers and passivation layers on solar cells. In this study, we investigated the properties of silicon nitride (SiNx:H) films made by PECVD. The passivation properties of SiNx:H are focused on by making the antireflection properties identical. To make equivalent optical properties of silicon nitride films, the refractive index and thickness of the films are fixed at 2.0 and 90 nm, respectively. This limit makes it easier to evaluate silicon nitride film as a passivation layer in realistic application situations. Next, the effects of the mixture ratio of the process gases with silane (SiH4) and ammonia (NH3) on the passivation qualities of silicon nitride film are evaluated. The absorption coefficient of each film was evaluated by spectrometric ellipsometry, the minority carrier lifetimes were evaluated by quasi-steady-state photo-conductance (QSSPC) measurement. The optical properties were obtained using a UV-visible spectrophotometer. The interface properties were determined by capacitancevoltage (C-V) measurement and the film components were identified by Fourier transform infrared spectroscopy (FT-IR) and Rutherford backscattering spectroscopy detection (RBS) - elastic recoil detection (ERD). In hydrogen passivation, gas ratios of 1:1 and 1:3 show the best surface passivation property among the samples.
        4,000원
        4.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tantalum nitrides () have been developed to substitute the Cd based pigments for non-toxic red pigment. Various doping elements were doped to reduce the amount of high price Tantalum element used and preserve the red color tonality. Doping elements were added in the synthesizing process of precursor of amorphous tantalum oxides and then Tantalum nitrides doped with various elements were obtained by ammonolysis process. The average particle size of final nitrides with secondary phases was larger than the nitride without the secondary phases. Also secondary phases reduced the red color tonality of final products. On the other hand, final nitrides without secondary phase had orthorhombic crystal system and presented good red color. In other words, in the case of nitrides without secondary phases, doping elements made a solid solution of tantalum nitride. In this context, doping process controlled the ionic state of nitrides and the amount of oxygen/nitrogen in final nitrides affected the color tonality.
        4,000원
        6.
        1998.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of the / phase fraction on the mechanical properties in silicon nitrides was investigated in part 1. In part II, we describe the role of microstructure on the mechanical properties and contact damage of silicon nitrides with coarse/equiaxed and coarse/elongated microstructures. Grain sizes and shapes were controlled by starting powder. Hertzian indentation using spherical indenter was also used to investigate contact damage behavior. Cone cracks from the spherical indentation were suppressed when the silicon nitride contains coarse and elongated grains. Coarse and elongated grains played an important role of cone crack suppression. The size of quasi-plastic zone does not depend on grain size or shape but depends on the fraction of / phase. A quasi-plastic zone was consisting of microcracks by shear stress during indentation.
        4,000원
        7.
        1998.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of / phase on the mechanical properties and contact damage of silicon nitrides ) was investigated. Silicon nitride materials were prepared from two starting powders, at selective increasing hot-pressing temperatures to coarsen the microstructures: (i) from relatively coarse -phase powder, essentially equiaxed - grains, with limited, slow transformation to - grain; (ii) from relatively fine -phase powder, a more rapid transformation to -, with attendant grain elongation. The resulting micro-structure thereby provided a spectrum of / phase ratios, grain sizes, and grain shapes. Fracture strength, hardness, and toughness were measured, and contact damage and strength degradation after indentation were investigated by Hertzian indentation using spherical indenter. A brittle to ductile transition in depended on / phase ratio as well as grain size. Silicon nitride with elongated grains showed a superior, contact damage resistance.
        4,000원
        8.
        1993.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        극저탄소 알루미늄 킬드강내에 합금원소로 첨가된 Al, Ti, Nb, B등은 열처리 공정중 질화물이나 탄화물로 석출되어 강의 재결정집합조직을 변화시킴으로써 강판재의 디입드로잉 특성에 결정적인 영향을 미친다. 본 연구에서는 Ti및 Nb를 단독으로 또는 동시에 첨가한 데 이어, B, P, Si 및 Mn등을 추가로 첨가한 극저탄소 고강도 강판의 집삽조직에 미치는 질화물, 탄화물과 같은 미세 석출물의 영향을 TEM, SEM, 광학현미경분석에 의하여 조사하였다. Nb 및 Ti를 동시에 첨가한 강에서는 미세한 Nb2C 및 Ti2AIN가 주로 석출되는 반면, Nb를 단독으로 첨가한 강에서는 미세한 AIN 및 조대한 BN이 석출되고,Ti를 단독으로 첨가한 강에서는 비교적 조대한 Ti4N3및 조대한 N10N22/Ti68이 석출되는 것으로 관찰되었다. 또한 이러한 탄질화물들의 석출에 의하여 세 강이 서로 다른 결정입도를 나타내는데, 결정입도는 Nb 및 Ti동시첨가강과 Nb단독첨가강이 서로 비슷하고, Ti단독첨가강이 가장 큰 것으로 나타났다.
        4,000원
        9.
        1993.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        AI킬드한 극저탄소강에 Ti, Nb등의탄화물 또는 질화물 형성원소를 첨가하면 우수한 디프드로잉특성과 내시효성을 나타내는 강판을 얻을 수 있다고 알려져 있으므로 본 연구에서는 Ti및 Nb를 단독 또는 동시에 첨가하거나 B를 추가로 첨가한 고강도 극저탄소 강판을 제조하여 각각의재결정 집합조직과 기계적 성질을 측정비교하여 보았다. 역극점도에 나타난 집합조직강도의 변화를 조사한 결과 어닐링처리에 의하여 (100)면 강도와 (111)면 강도의 변화가 가장 많이 나타난 것은 Nb첨가강이며, Nb와 Ti를 단독으로 첨가한 강과 Ti를 단독으로 첨가한 강은 변화정도가 비슷하였다.극점도를 비교하면,Nb와 Ti를 동시에 첨가한강, Nb를 단독으로 첨가한 강 그리고 Ti를 단독으로 첨가한강 모두 냉간 압연한 상태에서는112<110>집합조직이 발달하였으며 어닐링처리한 후에는 111<112>집합조직이 잘 발달하였다. 그러나 세 종류의 강간에 집합조직의 차이는 별로 없었다. 결정립도와 관계가 깊은 경도에서는 결정립도가 가장 작은 Nb 및 Ti동시첨가강에서 경도가 가장 높고, Nb단독첨가강, Ti단독첨가강의 순서로 감소하는 경향을 보였다.
        4,000원