대기 모델링 연구에서 시간 간격을 적절하게 결정하는 것은 중요한 문제이다. 본 연구에서는 비선형 대기 모형에서 수치 해의 시간 간격에 대한 민감도를 조사하였다. 이를 위해 간단한 무차원화된 역학 모형을 사용하여 시간 간격과 비선형성 인자를 바꾸어가며 수치 실험을 수행하였다. 실험 결과, 비선형성 인자가 영향을 줄 만큼 크지 않고 절단 오차를 무시할 수 있는 경우에는 수치 해가 시간 간격에 민감하지 않았다. 그러나 비선형성 인자가 큰 경우에는 수치 해가 시간 간격에 민감한 것으로 밝혀졌다. 이 경우, 시간 간격이 감소할수록 공간 필터의 강도가 증가하여 작은 규모의 현상이 약하게 모의되었다. 이는 일반적으로 시간 간격이 감소하면 절단 오차가 감소하여 더 정확한 수치 해가 도출된다는 사실과 상충한다. 이러한 충돌은 비선형 모형의 수치 해를 안정하게 하기 위해 공간 필터가 반드시 필요하기 때문에 피할 수 없다.
The problem for the collapse of isothermal and rotational self-gravitational viscous disk is considered. We derive self-similar solutions for the cases in the inner and outer regions of the self-gravitational viscous disk. We show that surface density depends on σ0/r in the outer region of the disk using a slow accretion approximation. The ratio of a modified viscous parameter in the outer region of the disk to that in the inner region is 0.042. We resorted to numerical solutions of governing equations of the self-gravitational disk to find out profiles of σ, u and υ in terms of x. Their profiles were rapidly changed around the innermost region of the self-gravitational disk. It indicates that a new object was formed in the most inner region of the disk.