The metal bush assembling process is a process of inserting and compressing a metal bush that serves to reduce the occurrence of noise and stable compression in the rotating section. In the metal bush assembly process, the head diameter defect and placement defect of the metal bush occur due to metal bush omission, non-pressing, and poor press-fitting. Among these causes of defects, it is intended to prevent defects due to omission of the metal bush by using signals from sensors attached to the facility. In particular, a metal bush omission is predicted through various data mining techniques using left load cell value, right load cell value, current, and voltage as independent variables. In the case of metal bush omission defect, it is difficult to get defect data, resulting in data imbalance. Data imbalance refers to a case where there is a large difference in the number of data belonging to each class, which can be a problem when performing classification prediction. In order to solve the problem caused by data imbalance, oversampling and composite sampling techniques were applied in this study. In addition, simulated annealing was applied for optimization of parameters related to sampling and hyper-parameters of data mining techniques used for bush omission prediction. In this study, the metal bush omission was predicted using the actual data of M manufacturing company, and the classification performance was examined. All applied techniques showed excellent results, and in particular, the proposed methods, the method of mixing Random Forest and SA, and the method of mixing MLP and SA, showed better results.
식물의 조직배양에서 가장 널리 이용되는 MS 배지 등의 무기성분은 종속영양에 적합하도록 조성되었다. 그러므로 이들 배지가 혼합영양이나 독립영양 배양에는 부적합 할 수 도 있다. 광혼합영양 미세증식에서 배지에 첨가되는 당의 수준은 낮추고 배양기의 광과 CO2 수준은 올리며, 광합성의 의한 탄소의 획득을 증진시키기 위해 열록소가 있는 절편체를 이용한다. Factorial 실험에서 유기물 (OM, m-3 배지당 각각 0.5g의 thiamine, nicotinic acid 및 pyridoxine과 100g · m-3 myo-inositiol)의 첨가(+)와 생략() 및 세 가지 수준의 당(0, 15 및 30 kg · m-3)이 감자 소식물체의 생장에 미치는 영향을 조사하였다. 단엽단절 절편체를 0.1×10-4m-3의 MS 아가(8 kg · m-3) 배지(증기소독 전 pH 5.80)배지가 담긴 유리 시험관(100mm×25mm)에 치상하여 직경 6mm의 가스투과 필터(5.1 air exchanges ·h-1)가 부착된 투명한 필름으로 봉하여 배양하였다. 배양체는 27일간 23℃, 50% RH에서 16 h · d-1의 명기 동안에 cool white 형광등으로 130μmol · m · s-1 PPFD의 광과 350-450μmol · mol-1의CO2가 공급되는 배양실에서 배양되었다. 유기물이 공급된 처리(+OM)와 공급되지 않은 처리(-OM)에서 감자 소식물체의 생육은 유사하였으나 배지의 pH는 후자에서 0.2 더 낮았다. 배지에 첨가된 당의 수준이 증가할수록 건물중, % 건물율 및 경경은 증진된데 반해 신초와 뿌리의 건물중 비율, 엽면적, 건물중당 엽록소 함량 및 배지의 pH는 감소하였다. 유기물과 당 수준간의 상호작용도 신초길이와 배지 pH에서 관찰되었다. 이상의 결과로부터 광도와 CO2농도를 높인 광혼압영양배양에서 감자 소식물체의 생장에는 배지에 첨가되는 당은 유익하지만 그 이외의 유기물은 첨가하지 않아도 악영향이 없다는 것은 나타낸다.
On Nov. 12. 2015, the Suprem Court of Korea has given out an judgement on the Sewol Ferry incident that convicted the captain of a Homicide by Omission who escaped the ship abandoning more than 300 passengers and crews trapped in the sinking ship. On the contrary it denied the first navigation officer and the second of the charge a complicity in homicide by omission. The Court said that a conviction shall not be made because it was hard to admit that they were in collusion with the captain and omitted their obligations out of willful negligence or dolus eventualis. However they, as the executive members of the ship, had duty to protect the passengers and the other crews on the Sewol Ferry from the danger of death in the ship in distress. They knew that they were in a tense situation and the captain didn’t organize his response appropriately, and they could have rescued most of the people who couldn’t escape from the sinking ship if they tried to fulfill their obligation. It can be said that they took charge in the crisis with the captain, and there was implied communication between them to omit their obligation when they abandoned the passengers and crews escaping the ship with no action to rescue them. This article deals with the practical and theoretical possibility that the executive navigation officers of the Sewol Ferry can be convicted of a complicity in homicide by omission.