During the intramedullary nailing procedure, surgeons feel difficulty in manipulation of the X-ray device to align it to axes of nailing holes and suffer from the large radiation exposure from the X-ray device. These problems are caused by the fact the surgeon cannot see the hole’s location directly and should use the X-ray device to find the hole’s location and direction. In this paper, we proposed the robotic guidance of the distal screwing using an optical tracking system. To track the location of the hole for the distal screwing, the reference marker is attached to the proximal end of an intramedullary nail. To guide the drill’s direction robustly, the 6-degree-of-freedom robotic arm is used. The robotic arm is controlled so as to align the drill guiding tool attached the robotic arm with the obtained the hole’s location. For the safety, the robot’s linear and angular velocities are restricted to the predefined values. The experimental results using the artificial bones showed that the position error and the orientation error were 0.91 mm and 1.64°, respectively. The proposed method is simple and easy to implement, thus it is expected to be adopted easily while reducing the radiation exposure significantly.
We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.
To protect and manage the Korean space assets including satellites, it is important to have precise positions and orbit information of each space objects. While Korea currently lacks optical observatories dedicated to satellite tracking, the Korea Astronomy and Space Science Institute (KASI) is planning to establish an optical observatory for the active generation of space information. However, due to geopolitical reasons, it is difficult to acquire an adequately sufficient number of optical satellite observatories in Korea. Against this backdrop, this study examined the possible locations for such observatories, and performed simulations to determine the differences in precision of optical orbit estimation results in relation to the relative baseline distance between observatories. To simulate more realistic conditions of optical observation, white noise was introduced to generate observation data, which was then used to investigate the effects of baseline distance between optical observatories and the simulated white noise. We generated the optical observations with white noise to simulate the actual observation, estimated the orbits with several combinations of observation data from the observatories of various baseline differences, and compared the estimated orbits to check the improvement of precision. As a result, the effect of the baseline distance in combined optical GEO satellite observation is obvious but small compared to the observation resolution limit of optical GEO observation.
인공우주물체는 출현 시간이 비교적 짧고 운동 특성이 고정적이지 않기 때문에 한 번의 관측으로 측광 및 분광 데이터를 획득하기 어렵다. 따라서 인공우주물체의 측광 및 분광 동시 관측을 위해서 경희대학교 인공위성 추적 및 관측시스템에 다중 광학계를 탑재할 수 있는 가대를 설계하였다. 이 연구에서 구조해석을 통해 다중 광학계 탑재 시에 개조된 가대의 변형을 계산하고 인공우주물체 추적 및 관측 시 발생할 수 있는 가대의 지향오차를 추론하여 관측시야에서 인공우주물체를 안정적으로 추적할 수 있음을 보였다. 또한 등가응력 해석을 수행하여 가대의 구조적 안전성을 확인하였다.