검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Prepreg is an abbreviation of Preimpregnated Materials. It is a sheet-type product in which a matrix is ​​impregnated with reinforced fiber. The prepreg has very different properties depending on the orientation of the fibers and the weaving method, and the orientation of the fibers plays an important role in determining the mechanical strength of CFRP. Short and randomly oriented reinforcing fibers show isotropy, while long, unidirectional reinforcing fibers exhibit anisotropic behavior and are strongest when the applied load is parallel to the reinforcing fibers. Classification by the direction of the fiber is divided into unidirectional, orthogonal, multiaxial, and the like. Uni-directional refers to a state in which almost all fibers in the fabric are aligned in one direction. When the fibers used as reinforcing materials are aligned in one direction, the fibers are used in a straight line without twisting during the fabric production process, and there is an advantage in that the amount of fibers used as a whole can be minimized. A uni-directional prepreg exhibits different cutting forces depending on the stacking orientation angle. In this experiment, the optimal cutting conditions for a uni-directional prepreg 45 degree orientation angle specimen are presented.
        4,000원
        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ion-beam irradiation(IB) on HfO2 surface induced high-performance liquidcrystal(LC) driving at a 1-V threshold with vertical alignment of liquid crystals(LC). The high-k materials Atomic layer deposition was used to obtain LC orientation on ultra thin and high-quality films of HfO2 layers. To analyze surface morphological transition of HfO2 which can act as physic alignment effect of LC, atomic force micro scopy images are employed with various IB intensities. The contact angle was measured to elucidate the mechanism of vertical alignment of LC on HfO2 with IB irradiation. Contact angle measurements show the surface energy changes via IB intensity increasing.
        4,000원
        3.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, methods that usea carbon-based filler, a conductive nanomaterial, have been investigated to develop composite fillers containing dielectric materials. In this study, we added geometric changes to a carbon fiber, a typical carbon-based filler material, by differentiating the orientation angle and the number of plies of the fiber. We also studied the electrical and electromagnetic shield characteristics. Based on the orientation angle of 0˚, the orientation angle of the carbon fiber was changed between 0, 15, 30, 45, and 90˚, and 2, 4, and 6 plies were stacked for each orientation angle. The maximum effect was found when the orientation angle was 90˚, which was perpendicular to the electromagnetic wave flow, as compared to 0˚, in which case the electrical resistance was small. Therefore, it is verified that the orientation angle has more of an effect on the electromagnetic interference shield performance than the number of plies.
        4,000원