검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2025.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present an atomistic investigation of the oxygen activation of a Pt nanoparticle with 147 atoms (Pt147), focusing on the role of microfacets. Using density functional theory (DFT) calculations, we evaluated the adsorption energy (Ead) of both molecular and atomic oxygen across the surface, along with the activation energy barrier (Eact) for O2 dissociation and subsequent atomic oxygen diffusion. The Pt147 exhibited a facet-dependent variation in O2 adsorption, while atomic oxygen displayed a relatively uniform Ead across the surface. This suggests that atomic oxygen can readily participate in surface reactions regardless of the location. The diffusion Eact values of atomic oxygen calculated along various pathways were lower than 0.61 eV, confirming the high surface mobility of oxygen atoms. Interestingly, we found a clear linear correlation between the Ead of O2 on Pt147 and the Eact of subsequent O2 dissociation. The results show that Pt nanoparticles with well-developed microfacets can efficiently activate molecular oxygen and facilitate oxidation reactions.
        4,000원
        2.
        2022.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The lattice oxygen mechanism (LOM) is considered one of the promising approaches to overcome the sluggish oxygen evolution reaction (OER), bypassing -OOH* coordination with a high energetic barrier. Activated lattice oxygen can participate in the OER as a reactant and enables O*-O* coupling for direct O2 formation. However, such reaction kinetics inevitably include the generation of oxygen vacancies, which leads to structural degradation, and eventually shortens the lifetime of catalysts. Here, we demonstrate that Se incorporation significantly enhances OER performance and the stability of NiFe (oxy)hydroxide (NiFe) which follows the LOM pathway. In Se introduced NiFe (NiFeSe), Se forms not only metal-Se bonding but also Se-oxygen bonding by replacing oxygen sites and metal sites, respectively. As a result, transition metals show reduced valence states while oxygen shows less reduced valence states (O-/O2 2-) which is a clear evidence of lattice oxygen activation. By virtue of its electronic structure modulation, NiFeSe shows enhanced OER activity and long-term stability with robust active lattice oxygen compared to NiFe.
        4,000원
        3.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To prepare activated carbon with a high specific surface area, oxygen functional groups (OFGs) that can serve as useful electron donors during KOH activation were treated with nitric acid and incorporated into activated carbon. OFGs are incorporated differently according to the surface characteristics of starting materials. Up to 22.46% OFGs are incorporated into wood-based activated carbons (WACs), the C=O, COOH contents was 1.90, 17.05%, respectively. Whereas up to 12.82% OFGs are incorporated into coconut shell-based activated carbons, the C=O, COOH contents was 4.12, 6.15%, respectively. The OFGs used for increasing the specific surface area are the carbonyl group, and as the content of the functional group increases, the carbonyl group spreads to the carboxyl group. The specific surface area of activated carbons increased by 10–68% with an increase in the carbonyl group up to 6% (maximum point of carbonyl group). On the other hand, the specific surface area for WACs increased when the carboxyl group was 10% or below, but decreased by 6–15% when it increased to 10% or excess.
        4,000원
        5.
        2016.03 구독 인증기관 무료, 개인회원 유료
        Chronic/cyclic neutropenia, leukocyte adhesion deficiency syndrome, Papillon-Lefèvre syndrome, and Chédiak-Higashi syndrome are associated with severe periodontitis, suggesting the importance of neutrophils in the maintenance of periodontal health. Various Toll-like receptor (TLR) ligands are known to stimulate neutrophil function, including FcR-mediated phagocytosis. In the present study, the effect of TLR2 activation on the non-opsonic phagocytosis of oral bacteria and concomitant production of reactive oxygen species (ROS) by human neutrophils was evaluated. Neutrophils isolated from peripheral blood were incubated with Streptococcus sanguinis or Porphyromonas gingivalis in the presence of various concentrations of Pam3CSK4, a synthetic TLR2 ligand, and analyzed for phagocytosis and ROS production by flow cytometry and chemiluminescence, respectively. Pam3CSK4 significantly increased the phagocytosis of both bacterial species in a dose-dependent manner. However, the enhancing effect was greater for S. sanguinis than for P. gingivalis. Pam3CSK4 alone induced ROS production in neutrophils and also increased concomitant ROS production induced by bacteria. Interestingly, incubation with P. gingivalis and Pam3CSK4 decreased the amounts of ROS, as compared to Pam3CSK4 alone, indicating the possibility that P. gingivalis survives within neutrophils. However, neutrophils efficiently killed phagocytosed bacteria of both species despite the absence of Pam3CSK4. Although P. gingivalis is poorly phagocytosed even by the TLR2-activated neutrophils, TLR2 activation of neutrophils may help to reduce the colonization of P. gingivalis by efficiently eliminating S. sanguinis , an early colonizer, in subgingival biofilm.
        4,000원
        6.
        2013.03 구독 인증기관 무료, 개인회원 유료
        The present study was conducted to examine the effect of antioxidant treatment during parthenogenetic activation procedure on the reactive oxygen species (ROS) levels and in vitro development of porcine parthenogenetic embryos. Porcine in vitro matured oocytes were activated by a combination of electric stimulus and 2 mM 6- dimethylaminopurine (6-DAMP) before in vitro culture. During the activation period, oocytes were treated with 50 μM β-mercaptoethanol (β-ME), 100 μM L-ascorbic acid (Vit. C) or 100 μM L-glutathione (GSH). To examine the ROS level, porcine parthenogenetic embryos were stained in 10 μM dichlorohydrofluorescein diacetate (H2DCFDA) dye 20 h after culture, examined under a fluorescence microscope, and the fluorescence intensity (pixels) were analyzed in each embryo. The parthenogenetic embryos were cultured for 6 days to evaluate the in vitro development. The apoptosis was measured by TUNEL assay. The H2O2 levels of parthenogenetic embryos were significantly lower in antioxidant treatment groups (26.9±1.6~29.1±1.3 pixels/embryo, p<0.05) compared to control (33.2±1.7 pixels/embryo). The development rate to the blastocyst stage was increased in antioxidant treatment groups (32.0~32.5%) compared to control (26.9%, p<0.05), although, there was no difference in apoptosis among groups. The result suggests that antioxidant treatment during parthenogenetic activation procedure can inhibit the ROS generation and enhance the in vitro development of porcine parthenogenetic embryos.
        4,000원
        7.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 공간 과제 수행 시 21%의 산소 농도와 30%의 고농도 산소 공급이 변연계의 활성화에 어떠한 변화를 유발하는지 관찰하였다. 총 8명의 오른손잡이 남자 대학생을 본 연구의 실험 참여자로 선정하였다. 공간 과제를 수행하는 동안 3T MRI 를 이용하여 뇌기능 영상을 획득하였다. 실험은 21%의 일반 공기 중의 산소 농도와 30%의 고농도 산소를 각각 공급하면서 공간 인지 과제를 수행하는 두 개의 회기로 구성된다. 변연계를 대상이랑(cingulate gyrus), 시상(thalamus), 변연엽(limbic lobe), 시상하부(hypothalamus), 해마(hippocampus), 해마방회(parahippocampa gyrus), 편도(amygdala), 유두체(mammilary body)의 8 개의 영역으로 분리하여 뇌 활성화 영역을 비교하였다. 공간 과제 수행 시 두 가지 산소 농도에 따른 변연계의 활성화 영역은 거의 동일하였다. 그러나 21%의 산소 농도에 비해 30%의 고농도 산소 공급 시 대상이랑(cingulate gyrus)과 시상(thalamus) 영역에서 활성화가 증가하였다. 즉, 30%의 고농도 산소 공급 시 공간 인지 수행 능력의 증가는 공간 인지 처리와 관련이 있는 대뇌 피질 뿐만 아니라 시상(thalamus)과 대상이랑(cingulate gyrus) 같은 피질하 영역에서의 신경 활성화의 증가와도 관련이 있는 것으로 판단된다.
        4,000원