Periodontitis is a chronic infectious disease that leads to periodontal destruction, and is one of the major causes of tooth loss in humans. The osteoclast differentiation factor (ODF), which is also known as the receptor activator of the NF-kB ligand (RANKL), is a surface-associated ligand on bone marrow stromal cells and osteoblasts. RANKL activates its cognate receptor, RANK, on osteoclast progenitor cells, which leads to the differentiation of mononucleated precursor cells. Osteoprotegerin (OPG) is a decoy receptor that is released from stromal cells and osteoblasts to inhibit the interaction between RANKL and RANK. Although the precise mechanism of bone loss in periodontitis is unknown, the differentiation and activation of osteoclasts by OPG-ODF-RANK signaling might play the role in periodontal bone destruction. The relationship between the concentration of sex hormones and the expression of ODF and OPG was examined by treating human gingival fibroblasts and periodontal ligament cells with the normal serum concentration of estrogen or progesterone during menstruation or at menopause. The ODF/OPG relative ratio was elevated at the concentration observed during ovulation in human gingival fibroblasts and at the concentration observed between ovulation and menstruation in periodontal ligament cells treated with estrogen. However, the ratio was <1 at all concentrations in both cells treated with progesterone. In the case of menopause simulated by estrogen depletion, the ratio was <1 in human gingival fibroblasts but >1 in periodontal ligament cells.
Periodontitis is a chronic infectious disease that leads to the destruction, one of the major cause of tooth loss in human. Osteoclast Differentiation Factor(ODF), also called as Receptor activator of NF-xB ligand(RANKL), a surface-associated ligand on bone marrow stromal cells and osteoblasts, activates its cognate receptor RANK on osteoclast progenitor cells, which leads to differentiation of these mononucleated precursor cells. Osteoprotegerin(OPG), a decoy receptor, is released from stromal cells and osteoblasts to inhibit the interaction between RANKL and RANK. The experiment for the effect of pregnancy on gingival health showed greater gingival inflammation and edema during pregnancy, despite similar plaque index. There should be many factors affecting the periodontal health in pregnancy. In this experiment, we examined the direct effects of sex hormones(estrogen and progesterone) on the ODF/OPG expression in human gingival fibroblasts and periodontal ligament cells at the serum concentration of pregnancy. The ratio was high in the 1st trimester of pregnancy by estrogen and in the late 2nd trimester by progesterone. Therefore, the local periodontal destruction might be accelerated by these hormonal effect on the periodontal cells.
Periodontalligament (PDL) fibroblasts have an ectomesenchymal origin and are known to participate not only in formation of PDL but also in the repair and regeneration of the a이acent alveolar bone and cementum. However, little is known about the molecular mechanism which is related to the development and differentiation of PDL cells. Recendy, we reported the PDLs (a periodontalligament-specific) 22 as a PDL fibroblast-specific mRNA which is not expressed in gingival fibroblasts. In this study, to examine the expression and functional characterization of PDμ22 mRNA and prαein in development and differentiation of periodontal 따sue , we carried out northem analysis, insitu hybridization, immunofluorescence and immunohistochemistry. The expression of PDLs22 mRNA was increased with PDL cell differentiation from the confluent to multilayer stage but decreased slighdy with mineralized nodule formation in vitro. πle PDLs22 protein was localized on the nuclear membrane and expressed throughout the differentiation of PDL fibroblasts in vitro. The PDLs22 mRNA and protein were expressed in the differentiating cementoblasts, PDL fibroblasts and osteoblasts along the r∞t surface and alveolar bone of the developing rat teeth. These results indicate that the PDLs22 plays an irnportant role in the differentiation of cementoblasts and osteoblasts and thus homeostasis of cementum, PDL and alveolar bone.