검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        2.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 대규모 토목 및 건축 구조물 증가 추세로 건설 부재의 고강도 및 경량화에 대한 수요가 높아지고 있다. 기존 시멘트 경량 복합체의 경우 단위 체적 중량이 낮아 강도 저하 문제가 발생할 수 있다. 보통 경량화를 위해서 시멘트 복합체를 배합할 때 일반 경량골재와 고무재질의 경량골재, 플라스틱 펠릿 등 다양한 인공 경량골재를 적용한 시멘트 복합체로 경량화를 확보할 수 있다. 이 중에서도 시멘트 복합체의 인공 경량골재로 플라스틱을 사용하면 상대적으로 골재 자체의 강도를 확보하면서 경량화를 꾀할 수 있지만 재료의 매끄러운 표면 특성으로 인해 시멘트 페이스트와 부착하는 데 불리한 부분이 있고 이는 콘크리트 골재 또는 시멘트 복합체 골재로서의 사용에 있어 단점이 된다. 띠라서 이번 연구에서는 기존 연구에서 플라스틱 골재 로 가장 적합한 유형으로 확인된 PP, PE 두가지 유형의 플라스틱 골재와 강섬유, 양생방법을 변수로 하여 실험을 진행하였고 실험 결과 플라스틱의 비중이나 표면 재질뿐만 아니라 강섬유의 혼입유무, 양생방법에 의해서 시멘트 복합체의 물리적 특성이 변화된다는 것을 확인하였다.
        4,000원
        4.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근에는 대규모 건축 및 토목 구조물로 인해 건설 부재의 고강도 및 경량화에 대한 요구가 높아지고 있다. 기존의 경량 시멘트 복합체의 경우 단위 체적 중량이 낮아질 수 있으나 강도 저하 문제가 발생한다. 일반적으로 경량화를 위해서는 시멘트 복합체를 배합할 때 일반 경량골재와 고무경량골재, 플라스틱 펠릿 등 다양한 인공 경량골재를 이용한 시멘트 복합체를 혼 합하여 경량화를 확보할 수 있다. 이 중 시멘트 복합체의 인공 경량골재로 플라스틱을 사용하면 상대적으로 골재 자체의 강도를 확보할 수 있지만 재료의 표면 특성으로 인해 시멘트 페이스트에 부착하는데 불리하고 골재로서의 사용이 불리하다. 이에 본 연구에서는 골재로 가장 적합한 플라스틱의 유형을 선택하기 위해 다양한 유형의 플라스틱 시멘트 화합물을 변수로 하여 실험을 진행하였고 실험 결과 플라스틱의 비중이나 표면 재질에 의해서 시멘트 복합체의 물리적 성질이 변화하는 것을 확인할 수 있었다.
        4,000원
        6.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to investigate the effect of no-tillage on sequential cropping supported from recycling of first crop ridge on the productivity of crop and physical properties of soil under green house condition. This study is a part of “No-tillage agriculture of Korea-type on recycled ridge”. From results for distribution of soil particle size with time process after tillage, soil particles were composed with granular structure in both tillage and no-tillage. No-tillage soil in distribution of above 2 mm soil particle increased at top soil and subsoil compared with tillage soil. Tillage and one year of no-tillage soil were not a significant difference at above 0.25 mm~below 0.5 mm, above 0.5 mm~below 1.0 mm, and above 1.0 mm of water-stable aggregate. Two years of no-tillage soil was significantly increased by 8.2%, 4.5%, and 1.7% at above 0.25 mm~below 0.5 mm, above 0.5 mm~below 1.0 mm, and above 1.0 mm of water-stable aggregate, respectively, compared with one year of no-tillage. Bulk density of top soil was 1.10 MG m3 at tillage and 1.30 MG m3 at one year of no-tillage. Bulk density of top soil was 1.14 MG m3 at two years and 1.03 MG m3 at three years of no-tillage, respectively. Bulk density of subsoil was a similar tendency. Solid phase ratio in top soil and subsoil was increased at one year of no-tillage compared with tillage soil, while soil phase ratio decreased at two and three years of no-tillage. Pore space ratio in tillage top soil (58.5%) was decreased by 8.5% at compared with no-tillage soil (51.0%). Pore space ratio was 56.9% and 61.2% at two and three years of no-tillage soil, respectively. Subsoil was a similar tendency. Gaseous phase ratio was decreased at one year of no-tillage soil, and increased at two and three years of no-tillage soil compared with tillage soil. Liquid phase ratio in top soil was increased at one year of no-tillage (28.3%), and decreased at two years (23.4%) and at three years (18.3 %) of no-tillage soil compared with tillage soil (24.2%). Subsoil was a similar tendency. Liquid phase ratio in subsoil was increased than top soil.