The recent prosthetic technologies pursue to control multi-DOFs (degrees-of-freedom) hand and wrist. However, challenges such as high cost, wear-ability, and motion intent recognition for feedback control still remain for the use in daily living activities. The paper proposes a multi-channel knit band sensor to worn easily for surface EMG-based prosthetic control. The knitted electrodes were fabricated with conductive yarn, and the band except the electrodes are knitted using non-conductive yarn which has moisture wicking property. Two types of the knit bands are fabricated such as sixteen-electrodes for eight-channels and thirty-two electrodes for sixteen-channels. In order to substantiate the performance of the biopotential signal acquisition, several experiments are conducted. Signal to noise ratio (SNR) value of the knit band sensor was 18.48 dB. According to various forearm motions including hand and wrist, sixteen-channels EMG signals could be clearly distinguishable. In addition, the pattern recognition performance to control myoelectric prosthesis was verified in that overall classification accuracy of the RMS (root mean squares) filtered EMG signals (97.84%) was higher than that of the raw EMG signals (87.06%).
최근 스크린 클라이밍용 콘텐츠로 클라이밍 학습 프로그램과 스크린 클라이밍 게임이 등장하였으 며, 특히 스크린 클라이밍 게임에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 스크린 클라이 밍 콘텐츠 구현의 핵심 기술인 자세 인식 성능의 개선을 위하여 등반자의 신체영역을 기반으로 하 는 스켈레톤 보정 방법을 제안한다. 스켈레톤 보정 과정은 비정상적인 스켈레톤 정보를 걸러내는 스켈레톤 프레임 안정화와 신체 영역을 관절부위별로 나누어 각 관절부위의 중점을 보정위치로 하 는 신체영역 기반 스켈레톤 수정 과정으로 이루어진다. 이렇게 보정한 스켈레톤 정보는 클라이밍 콘텐츠에서 등반자의 자세가 이상적인 자세와 얼마나 유사한지 판단하는 데 사용될 수 있다.