검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ceramic materials have become essential due to their high durability, chemical stability, and excellent thermal stability in various advanced industries such as aerospace, automotive, and semiconductor. However, high-performance ceramic materials face limitations in commercialization due to the high cost of raw materials and complex manufacturing processes. Aluminum borate (Al₁₈B₄O₃₃) has emerged as a promising alternative due to its superior mechanical strength and thermal stability, despite its simple manufacturing process and low production cost. In this study, we propose a method for producing Al₁₈B₄O₃₃ spherical powder with increased uniformity and high flowability by controlling the particle size of B₂O₃. The content ratio of the manufactured Al18B4O33 spherical powder was Al2O3: B2O3 = 87:13, and it exhibited a 17% reduction in the Hausner ratio (1.04) and a 29% decrease in the angle of repose (23.9°) compared to pre-milling conditions, demonstrating excellent flowability.
        4,000원
        2.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Powder characteristics, such as density, size, shape, thermal properties, and surface area, are of significant importance in the powder bed fusion (PBF) process. The powder required is exclusive for an efficient PBF process. In this study, the particle size distribution suitable for the powder bed fusion process was derived by modeling the PBF product using simulation software (GeoDict). The modeling was carried out by layering sintered powder with a large particle size distribution, with 50 μm being the largest particle size. The results of the simulation showed that the porosity decreased when the mean particle size of the powder was reduced or the standard deviation increased. The particle size distribution of prepared titanium powder by the atomization process was also studied. This study is expected to offer direction for studies related to powder production for additive manufacturing.
        4,000원
        3.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of particle size distribution on green and sintered properties of Fe-Cr-Mo prealloy powder was investigated in this study. For the study, prealloyed Fe-Cr-Mo powders with different particle sizes were mixed as various ratios and cold compacted at various pressure and sintered at for 30 min, atmosphere in the continuous sintering furnace. The results shows that the powders with large particle size distribution have high compressibility and low ejection force. However the green strength are much less than those with small particle size distribution. Tensile prperties of the sintered specimes with large particles size also have high strength and elongation.
        4,000원