검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 연안해양 수치모델에 활용되는 LDAPS 강우예보 자료의 시공간적 오차와 한계점을 분석하고 자료의 신뢰성을 검증 하였다. LDAPS 강우자료의 검증은 진해만 주변 우량계 3개소를 기준으로 2020년의 강우를 비교하였으며 우량계와 LDAPS의 비교 결과, LDAPS 강우자료는 장기적인 강우의 경향은 대체로 잘 재현하였으나 단기적으로는 큰 차이를 보였다. 정량적인 강우량 오차는 연간 197.5mm였으며, 특히 하계는 285.4mm로 나타나 계절적으로 강우변동이 큰 시기일수록 누적 강우량의 차이가 증가하였다. 강우 발생 시점 의 경우 약 8시간의 시간 지연을 나타내어 LDPAS 강우자료의 시간적 오차가 연안해양환경 예측 시 정확도를 크게 감소시킬 수 있는 것 으로 나타났다. 연안의 강우를 정확히 반영하지 못하는 LDAPS 강우자료를 무분별하게 사용할 경우 연안역에서 오염물질 확산 또는 극한 강우로 인한 연안환경 변화 예측에 심각한 문제를 발생시킬 수 있으며 LDAPS 강우자료의 적절한 활용을 위해서는 검증과 추가적인 개선 을 통한 정확도 향상이 필요하다.
        4,000원
        2.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        현재 최고 수준의 대순환 모형에서 북동아시아 여름몬순 강도의 계절예측 능력은 낮으나 북서태평양 아열대 고기압 강도의 예측률은 상대적으로 높다. 북서태평양 아열대 고기압은 북서태평양 지역 및 동아시아 지역에서 가장 주된 기후 변동성이다. 본 연구에서 NCEP 계절예측시스템에서 예측된 북서태평양 아열대 고기압의 예측성에 대해 논의될 것이다. 한편, 북동아시아 여름몬순의 경년변동성은 북서태평양 아열대 고기압과 높은 상관성을 가지고 있다. 본 연구에서는 이 관계에 근거하여, NCEP 계절예측시스템과 정준상관분석을 이용한 계절예측 모형을 제안하고 그 예측률을 평가하였다. 이 방법은 북동아시아 지역 여름철 강수량 편차에 대한 계절예측에 있어 통계적으로 유의한 예측성능을 제공한다.
        4,000원
        3.
        2002.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        경험적 직교함수(EOF)분석법과 다중회귀법에 기초하여 지연상관된 광역규모 예측인자로부터 3개월 이전에 계절 강수량을 예측할 수 있는 슈퍼앙상블 모델이 개발되었다. 이 모델의 예측성이 교차검증법에 의해 평가되었다. 관측값과 예측값사이의 상관계수는 봄철에 0.73, 여름철에 0.61, 가을철에 0.69, 겨울철에 0.75로 나타났다. 이러한 값은 유의수준 α=0.00에서 유의한 값이다. 수퍼 앙상블 방법의 범주형 예측성이 3개 범주로 나누어진 사례에 대해서 평가되었다. 3개 범주는 계절 누적강수량의 상위 33.3%를 과우해, 하위 33.3%를 소우해, 그 나머지를 평년해로 구분하였다. 범주형 예측의 적중률은 계절에 따라 42%에서 74%로 나타났다.
        4,000원
        4.
        2021.12 KCI 등재 서비스 종료(열람 제한)
        In this study, the prediction technology of Hydrological Quantitative Precipitation Forecast (HQPF) was improved by optimizing the weather predictors used as input data for machine learning. Results comparison was conducted using bias and Root Mean Square Error (RMSE), which are predictive accuracy verification indicators, based on the heavy rain case on August 21, 2021. By comparing the rainfall simulated using the improved HQPF and the observed accumulated rainfall, it was revealed that all HQPFs (conventional HQPF and improved HQPF 1 and HQPF 2) showed a decrease in rainfall as the lead time increased for the entire grid region. Hence, the difference from the observed rainfall increased. In the accumulated rainfall evaluation due to the reduction of input factors, compared to the existing HQPF, improved HQPF 1 and 2 predicted a larger accumulated rainfall. Furthermore, HQPF 2 used the lowest number of input factors and simulated more accumulated rainfall than that projected by conventional HQPF and HQPF 1. By improving the performance of conventional machine learning despite using lesser variables, the preprocessing period and model execution time can be reduced, thereby contributing to model optimization. As an additional advanced method of HQPF 1 and 2 mentioned above, a simulated analysis of the Local ENsemble prediction System (LENS) ensemble member and low pressure, one of the observed meteorological factors, was analyzed. Based on the results of this study, if we select for the positively performing ensemble members based on the heavy rain characteristics of Korea or apply additional weights differently for each ensemble member, the prediction accuracy is expected to increase.
        5.
        2018.07 KCI 등재 서비스 종료(열람 제한)
        최근 이상기후로 인한 집중호우 발생빈도와 이로 인한 국지적인 홍수 피해가 증가하고 있다. 이러한 점에서 홍수피해 예방측면에서 수치예보 정보 활용이 요구되고 있다. 그러나 수치예보모델은 초기 조건 및 지형적 요인으로 인해 시공간적 편의가 존재하며 실시간 예측정보로 활용하기 전에 모 형결과에 대한 편의보정이 요구된다. 본 연구에서는 관측지점 기준으로 편의 보정계수를 산정하는 과정에서 모든 관측소간의 상관성을 거리의 함 수로 고려하여 미계측지점의 편의 보정계수를 공간적으로 확장할 수 있는 Bayesian Kriging 기반 MFBC 기법을 개발하였다. 본 연구에서 개발한 방법은 미계측 유역에 대해서도 보정계수를 효과적으로 추정하는 것이 확인되었으며, 비교적 고해상도로 72시간(3일) 정도까지 예측강우 정보를 활용하는 것이 가능할 것으로 판단된다.
        6.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        A statistical forecast model for early spring (March and April) precipitation over South Korea is developed by using multiple linear regression method. Predictors are selected among the forty five large-scale atmospheric and oceanic indices. Because the model is meant to use for real-time forecast, the predictors are chosen from the indices that have statistically significant lag correlation with observed early spring precipitation. The selected predictors of early spring precipitation are North Pacific Pattern with 6-month lead, Siberian High Index with 5-month lead and Indian Ocean Basin Mode Index with 3-month lead from March, and they are statistically independent. We applied leave-two-out cross validation. According to the regression map between these indices and synoptic circulations around Korean peninsula, these indices represent the induction of early spring rainfall by controlling East Asian jet and low level moisture flux. The regression coefficients for each training period show that three indices affects evenly at every forecast year and they show stable variability, indicating that the influence of each index does not depend on training period. The developed statistical model significantly predicted early spring precipitation over South Korea (r=0.63, p-value<0.01). Also it marks 61% of hit rate according to the three-category deterministic forecast.
        7.
        2012.07 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 지상의 관측 자료와 광역의 정보를 제공하는 수치 예보 모형 자료 및 인공위성 자료를 이용하고 자료와 강수예측치의 물리적 상관 특성을 나타내기 위하여 자료 사이의 비선형 거동을 잘 나타내는 신경망 모형에 적용시켜 단시간 강수 예측을 수행하였다. 이를 위하여 서울지점에 대하여 현재로부터 3시간, 6시간, 9시간, 12시간의 선행시간을 가지는 인공위성 자료(MTSAT-1R) 및 수치 예보 모형 자료(RDAPS, Regional Data Assimilation and Prediction System)와 실시간 전송되는 자동 기상 관측 시스템(AWS, Automatic Weather System)의 관측치를 신경망 모형의 입력 자료로 하여 3시간, 6시간, 9시간, 12시간의 선행시간을 가지는 자료로 강수를 예측 할 수 있는 강수 예측 모형을 개발하였다. 장마와 태풍과 같이 전선형강수와 선풍형강수 등 강수 양상의 차이를 고려하기 위하여 6월, 7월과 8월, 9월 자료를 구분하여 신경망을 구축하였으며, 자료가용성에 기초하여 2006년에서 2008년 기간 동안에 대하여 모형을 학습하고 2009년에 대하여 모형의 적용성을 검증한 결과, 단시간 강수예측에 대한 모형의 적용 가능성을 보여주었으나 다양한 광역 자료와 인공신경망을 사용함에도 불구하고 단시간 강수예측의 정량적 정도향상을 위한 여지가 많음을 보여준다.
        8.
        2011.03 KCI 등재 서비스 종료(열람 제한)
        입력자료의 불확실성은 강우-유출 모의에서 중요한 불확실성 요소 중의 하나이다. 본 연구에서는 먼저 세 가지의 서로 다른 내삽 기법을 통해 계산된 강수 입력 자료 (관측값을 각 소유역의 중심점으로 내삽하여 추정한 입력자료임)들이 강우-유출 모형에 미치는 영향을 분포형 수문모형 (PRMS)을 이용하여 분석하였으며, 내삽오차를 바탕으로 발생한 입력자료를 앙상블 유량 예측에 이용하는 과정을 수문학적으로 서로 다른 두개 하천 유역에 적용하였다. 또한 Monte
        9.
        2006.03 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 경안천 유역에 대해 초단시간 강수예보모델인 VSRF(Very Short Range Forecast of precipitation) 모델에서 생산되는 예측강우량의 검증을 실시하고, 이를 NWSPC(National Weather Service PC) 강우-유출 모형에 적용하였다. 강수는 기상학적 검증과 수문학적 검증으로 구분하여 검증하였다. 기상학적 검증은 유역 내에 존재하는 AWS 강수량과 VSRF모델 강수량의 정성적 관계를 객관적으로 제시
        10.
        2005.01 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 단기 예측강우를 활용하여 실시간 유량을 예측할 수 있는 기상-수자원 연계기법을 개발하였다. 이를 위해 기상청의 RDAPS 강수자료와 저류함수(SFM) 모델을 통해 소양강댐 상류유역의 댐유입량을 계산하고 그 정확도를 분석하였다. 대상 사례기간인 2003년 7월 18일부터 2003년 7월 24일까지 RDAPS 강우예측자료의 정확도를 평가한 결과 RDAPS 및 관측 강수량 사이의 정성적 평가에서 매우 우수한 정확도를 보이고, 수자원 측면에서 필