To understand the genesis of tropical cyclones (TC), we computed TC genesis probability (GPr) by partitioning a highly localized genesis frequency (GFq) into nearby grid boxes in proportion to the spatial coherence of genesis potential index (GPI). From the analysis of TCs simulated by the Seoul National University Atmosphere Model Version 0 and the observed TCs, it was shown that GPr reasonably converges to GFq when averaged over a long-term period in a decent grid size, supporting its validity as a proxy representing a true TC GPr. The composite anomalies of the gridded GPr in association with the Asia summer monsoon, El Nino-Southern Oscillation (ENSO), and the Madden-Julian Oscillation (MJO) are much less noisy than those of GFq, and consequently are better interpretable. In summary, GPr converges to GFq, varies more smoothly than GFq, represents the spatiotemporal variations of GFq better than GPI, and depicts GFq with greater spatial details than other spatially smoothed GFqs.
Since transmitting various files around Internet is one of common activities in everyday life, the compression is important technical issue in these days. Shape models are also frequently transmitted and therefore its compression has also been studied. Considering the large portion of shape model can be normal vectors, a new scheme was recently presented to compress normal vectors using clustering and mixed indexing scheme. Presented in this paper is a mathematical investigation of the scheme to analyze the probability distribution of normal index distances in Normal Index array which is critical for the compression. The probability distribution is formulated so that the values can be easily calculated once the relative probabilities of C, R, E, S, and L op-codes in Edgebreaker are known. It can be shown that the distribution of index distances can be easily transformed into a few measures for the compression performance of the proposed algorithm.
본 연구에서는 확률밀도함수의 서식처 적합도 지수를 사용하여 도심하천구간과 자연하천구간에서 유량점증방법론(Instream flow Incremental Methodology, IFIM)을 토대로 피라미 서식처의 생태유량을 모의하였다. 이와 같은 방법을 적용하기 위하여 본 연구에서는 PHABSIM 모형을 사용하였다. 본 연구에서는 서식처 적합도 지수(Kang, 2010)를 기초로 확률밀도함수의 매개변수를 조정하여 확률밀도함수의 서식처 적합도 지수를 개발하여 생태유량을 분석하였다. 그 결과, 도심하천구간에서는 정규분포가 자연하천구간에서는 2변수 log-pearson 분포가 Kang (2010)의 생태유량에 가장 근접하는 경향을 보였다. 확률밀도함수에 의한 서식처 적합도 지수와 하천구간별로 생태유량을 모의하여 확률론적 방법을 적용한 생태유량 산정기법을 제안하였다.
정확히 가뭄을 모의하기 위해서는 수문기상학적 현상을 반영할 수 있는 가뭄지수가 필요하며, 국내에서 수문학적 가뭄을 모의하기 위해 MSWSI (Modified Surface Water Supply Index)를 활용한 여러 연구가 진행되었다. 본 연구에서는 MSWSI의 한계점을 분석하고 MSWSI의 불확실성을 정량화하였다. 우선 MSWSI 인자로서 활용가 능한 수문기상인자의 선정에 따른 영향을 분석하였다. 기존 MSWSI에 적용한 하천유량, 지하수위, 강수, 댐유입량의 4개 입력인자별로 하나의 관측소자료만을 이용하였으 나 본 연구에서는 중권역별 특성에 맞도록 댐저수위와 댐방류량도 포함하였으며, 여러 관측소의 자료를 취득하여 면적평균자료를 사용하였다. 2001년과 2006년 가뭄사례 에 대해 MSWSI 모의검증 결과, 본 연구의 MSWSI가 실측수문기상자료의 경향을 더 잘 반영하여 가뭄을 모의하였으며, MSWSI 인자의 선정이 가뭄모의 정확성에 영향을 주는 것으로 나타났다. 다음으로 MSWSI 인자에 적용하는 확률분포의 선정에 따른 영향을 분석하였다. 강수자료는 Gumbel와 GEV 분포, 하천자료는 정규분포와 Gumbel 분포, 댐자료는 2-매개변수 대수정규분포와 Gumbel, 지하수는 3-매개변수 대수정규분포를 따르는 것으로 나타났다. 이에 따라 중권역별로 최대 36개의 MSWSI를 산정하 였으며, 확률분포의 선정에 따라 MSWSI 범위가 매우 다르게 나타나 어떠한 확률분포을 적용하느냐에 따라 MSWSI 결과는 매우 달라질 수 있음을 확인하였다. 마지막으로 maximum entropy를 이용하여 MSWSI 입력인자의 선정과 입력인자별 확률분포 선정의 영향에 따른 불확실성을 정량화하였다. 분석결과, 입력인자의 수가 많이 적용될수 록 불확실성은 증가하는 것으로 나타났으며, 홍수기에 MSWSI 입력인자별 확률분포 적용에 따라 MSWSI의 불확실성이 증가하는 것으로 나타났다.