To establish low-temperature process conditions, process-property correlation has been investigated for Ga-doped ZnO (GZO) thin films deposited by pulsed DC magnetron sputtering. Thickness of GZO films and deposition temperature were varied from 50 to 500 nm and from room temperature to 250 oC, respectively. Electrical properties of the GZO films initially improved with increase of temperature to 150 oC, but deteriorated subsequently with further increase of the temperature. At lower temperatures, the electrical properties improved with increasing thickness; however, at higher temperatures, increasing thickness resulted in deteriorated electrical properties. Such changes in electrical properties were correlated to the microstructural evolution, which is dependent on the deposition temperature and the film thickness. While the GZO films had c-axis preferred orientation due to preferred nucleation, structural disordering with increasing deposition temperature and film thickness promoted grain growth with a-axis orientation. Consequently, it was possible to obtain a good electrical property at relatively low deposition temperature with small thickness.
Various thicknesses of Al-doped ZnO (AZO) films were deposited on glass substrate using pulsed dcmagnetron sputtering with a cylindrical target designed for large-area high-speed deposition. The structural,electrical, and optical properties of the films of various thicknesses were characterized. All deposited AZO filmshave (0002) preferred orientation with the c-axis perpendicular to the substrate. Crystal quality and surfacemorphology of the films changed according to the film thickness. The samples with higher surface roughnessexhibited lower Hall mobility. Analysis of the measured data of the optical band gap and the carrierconcentration revealed that there were no changes for all the film thicknesses. The optical transmittances weremore than 85% regardless of film thickness within the visible wavelength region. The lowest resistivity,4.13×10-4Ω·cm-1, was found in 750nm films with an electron mobility (µ) of 10.6cm2V-1s-1 and a carrierconcentration (n) of 1.42×1021cm-3.