The purpose of this study is to pushover analyze existing reinforced concrete(RC) frames strengthened by L-type precast concrete(PC) wall panels. Cyclic loading tests were performed on the partially infilled reinforced concrete(RC) frames by L-type PC wall panels. Based on the results of experimental test, the nonlinear pushover analysis was practiced by using a computer program. The analysis models were designed with two ways according to the test result. The PC wall panel and the RC column exhibited almost composite behavior by using brace when push loading applied. The two structures also exhibited independent behavior when pull loading applied. The results of pushover analysis models generally conform to the experimental results. The ratios of the maximum lateral load measured in the strengthened specimens from the analysis varied between 0.93 and 1.01 in forward cycles, and between 0.84 and 0.90 in backward cycles. The initial stiffness values of the analysis were less than the test values for all strengthened specimens. The ratio of the initial stiffness obtained through testing compared to the values from the analysis varied between 0.72 and 0.90.
Damage states of an underground tunnel structure need to be defined in the estimation of its seismic fragility. They are identified in this paper by applying pushover analyses of an typical tunnel structure. Latin Hypercube sampling (LHS) technique is used to explicitly consider uncertainties in the associated design variables.
To evaluate seismic performance of existing school buildings, This study performed pushover analysis using Midas/Gen Ver.795. The outcome shows that building have insufficient seismic performance and seismic reinforcement is necessary to have enough seismic performance.