A steady-state controllable M/G/1 queueing model operating under the {T:Min(T,N)} policy is considered where the {T:Min(T,N)} policy is defined as the next busy period will be initiated either after T time units elapsed from the end of the previous busy period if at least one customer arrives at the system during that time period, or after T time units elapsed without a customer’ arrival, the time instant when Nth customer arrives at the system or T time units elapsed with at least one customer arrives at the system whichever comes first. After deriving the necessary system characteristics including the expected number of customers in the system, the expected length of busy period and so on, the total expected cost function per unit time for the system operation is constructed to determine the optimal operating policy. To do so, the cost elements associated with such system characteristics including the customers’ waiting cost in the system and the server’s removal and activating cost are defined. Then, procedures to determine the optimal values of the decision variables included in the operating policy are provided based on minimizing the total expected cost function per unit time to operate the queueing system under considerations.
The BMAP/M/N/0 queueing system operating in Markovian random environment is investigated. The stationary distribution of the system is derived. Loss probability and other performance measures of the system also are calculated. Numerical experiments whic
Two-stage multi-server tandem queue with two types of processed customers is analyzed. Priority customers always are admitted into the system. Non-priority customers are admitted into the system only if the number of busy servers at the second stage does not exceed some pre-assigned threshold. Economic criterion of the system operation is optimized with respect to the threshold.
A multi-server queueing system with finite buffer is considered. The input flow is the BMAP (Batch Markovian Arrival Process). The service time has the PH (Phase) type distribution. Customers from the BMAP enter the system according to the discipline of
대기행렬 모형은 통신시스템이나 통신망 구현에 가장 적합한 수리모형으로 알려져 있고, 이에 대한 연구가 상당히 많이 진행되고 있다. 본 논문에서는 재해가 발생될 수 있는 BMAP/SM/1 대기시스템으로, 재해가 발생했을 경우 시스템 복구가 즉시 이루어지지 않고 임의 시간 후 복구 되는 시스템을 고려대상으로 하고 있다. 시스템의 정보입력흐름은 상호종속 또는 그룹 입력이 허용되는 배치마코프 도착과정으로 가정하였고, 또한 서비스분포는 세미 마코프 프로세스를
본 논문의 목적은 유한 저장공간을 가지는 대기행렬 시스템에서 완전공유 (Complete Sharing), 완전분할 (Complete Partitioning), 최소할당공유 (Sharing with Minimum Allocation) 와 같은 다양한 저장공간 공유방안들을 비교ㆍ분석하는 것으로, 이를 위하여 먼저 각각의 공유방안에서의 대기행렬 안정상태확률을 효율적으로 구할 수 있는 방법이 제시되었다. 다음으로 각각의 저장공간 공유방안을 특징짓는데 필요한 몇