검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2022.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, Y3Al5O12:Eu3+ red phosphors were synthesized at different temperatures using a solid state reaction method. The crystal structures, surface and optical properties of the Y3Al5O12:Eu3+ red phosphors were investigated using Xray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and photoluminescence (PL) analyses. From XRD results, the crystal structure of the Y3Al5O12:Eu3+ red phosphors was determined to be cubic. The maximum emission spectra were observed for the Y3Al5O12:Eu3+ red phosphor prepared by annealing for 4h at 1,700 oC. The 565~590 nm photoluminescent spectra of the Y3Al5O12:Eu3+ red phosphors is associated with the 5D0 → 7F2 magnetic dipole transition of the Eu3+ ions. The intensity of the photoluminescent spectra in the red phosphors is more dominant for the magnetic dipole transition than the electric dipole transition with increasing annealing temperature. The International Commission on Illumination (CIE) coordinates of Y3Al5O12:Eu3+ red phosphors prepared by 1,700 oC annealing temperature are X = 0.5994, Y = 0.3647.
        3,000원
        2.
        2021.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Y2O3:Eux (x = 0.005, 0.01, 0.02, 0.03, 0.05, 0.1 mol) phosphors are synthesized with different concentrations of Eu3+ ions by solvothermal method. The crystal structure, surface and optical properties of the Eu doped Y2O3 phosphors are investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and photoluminescence (PL) and photoluminescence excitation (PLE) analyses. From X-ray diffraction (XRD) results, the crystal structure of the Eu doped Y2O3 phosphor is found to be cubic. The maximum emission spectra of the Eu doped Y2O3 phosphors are observed at 0.05 mol Eu3+ concentration. The photoluminescence of 615 nm in the Eu doped Y2O3 phosphors is associated with 5D0 → 7F2 transition of Eu3+ ions. The decrease in emission intensity of 0.1 mol Eu doped Y2O3 is interpreted by concentration quenching. The International Commission on Illumination (CIE) coordinates of 0.05 mol Eu doped Y2O3 phosphor are X = 0.6547, Y = 0.3374.
        3,000원
        3.
        2016.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To prepare Mn4+-activated K2TiF6 phosphor, a precipitation method without using hydrofluoric acid (HF) was designed. In the synthetic reaction, to prevent the decomposition of K2MnF6, which is used as a source of Mn4+ activator, NH5F2 solution was adopted in place of the HF solution. Single phase K2TiF6:Mn4+ phosphors were successfully synthesized through the designed reaction at room temperature. To acquire high luminance of the phosphor, the reaction conditions such as the type and concentration of the reactants were optimized. Also, the optimum content of Mn4+ activator was evaluator based on the emission intensity. Photoluminescence properties such as excitation and emission spectrum, decay curve, and temperature dependence of PL intensity were investigated. In order to examine the applicability of this material to a white LED, the electroluminescence property of a pc-WLED fabricated by combining the K2TiF6:Mn4+ phosphor with a 450 nm blue-LED chip was measured.
        4,000원
        4.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Red phosphors of Gd1-xAl3(BO3)4:Eux3+ were synthesized by using the solid-state reaction method. The phasestructure and morphology of the phosphors were measured using X-ray diffraction (XRD) and field emission-scanning electronmicroscopy (FE-SEM), respectively. The optical properties of GdAl3(BO3)4:Eu3+ phosphors with concentrations of Eu3+ ions of0, 0.05, 0.10, 0.15, and 0.20mol were investigated at room temperature. The crystals were hexagonal with a rhombohedrallattice. The excitation spectra of all the phosphors, irrespective of the Eu3+ concentrations, were composed of a broad bandcentered at 265nm and a narrow band having peak at 274nm. As for the emission spectra, the peak wavelength was 613nmunder a 274nm ultraviolet excitation. The intensity ratio of the red emission transition (5D0→7F2) to orange (5D0→7F1) showsthat the Eu3+ ions occupy sites of no inversion symmetry in the host. In conclusion, the optimum doping concentration of Eu3+ions for preparing GdAl3(BO3)4:Eu3+ phosphors was found to be 0.15mol.
        4,000원
        5.
        2008.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Eu3+-activated R3GaO6 (R=Y, Gd) phosphors were prepared in a conventional solid-state reactionand their optical properties were investigated. These compounds exhibit strong red emission under lightexcitation at 254nm. The emission spectra are dominated by peaks appearing around 610-630nm that areinduced by the electric dipole transition of 5D0→7F2 of Eu3+. In addition, the appropriate CIE (CommissionInternationale de l’clairage) chromaticity coordinates, (x=0.656, y=0.336) for Y3GaO6 and (x=0.655, y=0.334)for Gd3GaO6, become closer to the NTSC (National Television System Committee) standard values. With theoptimized activator concentrations, the maximum emission brightness is approximately 80% of Y2O3:Eu3+typical red-emitting phosphor with improved color purity under an excitation condition of 254nm.
        3,000원