The ocean is linked to long-term climate variability, but there are very few methods to assess the short-term performance of forecast models. This study analyzes the short-term prediction performance regarding ocean temperature and salinity of the Global Seasonal prediction system version 5 (GloSea5). GloSea5 is a historical climate re-creation (2001-2010) performed on the 1st, 9th, 17th, and 25th of each month. It comprises three ensembles. High-resolution hindcasts from the three ensembles were compared with the Array for Real-Time Geostrophic Oceanography (ARGO) float data for the period 2001-2010. The horizontal position was preprocessed to match the ARGO float data and the vertical layer to the GloSea5 data. The root mean square error (RMSE), Brier Score (BS), and Brier Skill Score (BSS) were calculated for short-term forecast periods with a lead-time of 10 days. The results show that sea surface temperature (SST) has a large RMSE in the western boundary current region in Pacific and Atlantic Oceans and Antarctic Circumpolar Current region, and sea surface salinity (SSS) has significant errors in the tropics with high precipitation, with both variables having the largest errors in the Atlantic. SST and SSS had larger errors during the fall for the NINO3.4 region and during the summer for the East Sea. Computing the BS and BSS for ocean temperature and salinity in the NINO3.4 region revealed that forecast skill decreases with increasing lead-time for SST, but not for SSS. The preprocessing of GloSea5 forecasts to match the ARGO float data applied in this study, and the evaluation methods for forecast models using the BS and BSS, could be applied to evaluate other forecast models and/or variables.
Prediction of the seasonal occurrence and potential distribution of agricultural pests has accomplished by software toolsimplementing species distribution models (SDMs). In this aspect, we used CLIMEX software to evaluate the seasonaloccurrence and potential distribution of Indian meal moth, Plodia interpunctella (Hübner), which is one of household mothsdamaging dried fruits in pantries. Based on the simulation, the beginning of period for suitable climate was predictedto be from mid-March to end-March, while it might be end in late October to early November. The peak time for P.interpunctella was ranged from early or mid-July to mid-August, but depended on local geography. When applying RCP8.5 climate change scenario, it was predicted that P. interpunctella would not occur due to intensive rainfall in July andAugust in 2060.
Through an integration of seasonal climate forecasts (SCF) and rice pest epidemiological models, a potential risk forrice pest epidemics can be predicted even before a cropping season starts. The objective of the study was to developand evaluate an epidemiological “rtdSim” model for tungro, a vector-born rice disease, aiming at predicting a seasonaltungro risk in the Bicol Region of the Philippines. Predicting tungro epidemics requires many components explaining thecomplex nature of the three-cornered pathosystems (virus, vector, and host) and their interactions with environmental variables.The rtdSim model successfully calculated number of rice hills infected with the rice tungro virus through its vector, thegreen leafhopper (GLH). The present study highlights the potential for developing a climate-based early warning systemfor rice pests, thus allowing better decision-making on a seasonal level.
The interannual variability of summer temperature during June-August (JJA) in South Korea was associated with geopotential height averaged in the East Sea (Korea-Japan Index, KJI) and in the subtropical western North Pacific (Western North Pacific Subtropical High Index, WNPSHI). The KJI was coupled with a decaying El Niño one month in advance, while the WNPSHI was influenced by Sea Surface Temperature (SST) anomaly in the western North Pacific and a developing El Niño one to three months ahead. Additionally, the JJA temperature over South Korea was affected by SST anomaly in the western North Pacific in May. Based on these teleconnections, a multivariate regression model using the SST surrogates for the KJI and WNPSHI and an univariate model using an area-averaged May SST were developed to reconstruct the JJA temperature over South Korea. Both of the empirical models reproduced the JJA and monthly temperatures reasonably well. However, when the simulated SSTs from global climate models were used, the multivariate model outperformed the univariate model. Further, for JJA temperature prediction, the multivariate model with 6-month lead SST outstripped one-month lead prediction of global climate models. Therefore, the empirical-dynamical approach can pave a promising way for summer temperature prediction in South Korea.
The traffic accidents in large cities such as Pusan metropolitan city have been increased every year due to increasing of vehicles numbers as well as the gravitation of the population. In addition to the carelessness of drivers, many meteorological factors have a great influence on the traffic accidents. Especially, the number of traffic accidents is governed by precipitation, visibility, humidity, cloud amounts and temperature, etc.
In this study, we have analyzed various data of meteorological factors from 1992 to 1997 and determined the standardized values for contributing to each traffic accident. Using the relationship between meteorological factors(visibility, precipitation, relative humidity and cloud amounts) and the total automobile mishaps, an experimental prediction formula for their traffic accident rates was seasonally obtained at Pusan city in 1997.
Therefore, these prediction formulas at each meteorological factor may be used to predict the seasonal traffic accident numbers and contributed to estimate the variation of its value according to the weather condition in Pusan city.
수도출수기의 년차간변이정도를 알고 아울러 출수기의 조기예측방법을 연구검토코자 1959년부터 1964년까지 6개년간에 걸쳐 관산외 5개품종을 공시하여 작물시험장 답작과(수원)에서 실시한 조기ㆍ보통기 및 만기 재배시험성적과 1953년부터 1964년까지 12갠년간에 걸쳐 각도에서 실시한 수도풍흉고조시험성적으로부터 품종별로 매년의 출수기를 조사정리하고, 아울러 당해연도 해지방의 기상통계를 조사정리하여 출수기의 변이와 기상요인과의 관계를 연구검토하여 출수기의 조기예측방법을 모색코자 시도한 것으로서 그 결과는 다음과 같다. 1. 수도출수기의 년차간변이 : 이것은 조기재배에 있어서는 14∼21일로서 대단히 크며, 보통기재배에서는 7∼14일 정도이고, 만기재배에 있어서는 1∼7일 정도로서 어느 재배시기보다 적으며, 그정도는 품종ㆍ재배시기 및 지역 등에 따라 차이기 있다. 2. 수도출수기의 조기예측 : 조기재배에 있어서는 공시전품종 파종후 31일부터 40일간의 적산온도와 출수일수간에 가장 높은 부의 상관을 가지고 있으며, 따라서 이 기간의 적산온도 및 회귀 직선식(Y=a+bX)의 산출에 의하여 실용적출수기를 조기에 예측할 수 있다고 생각된다. 그러나 만생종에 대하여 앞으로 더욱 검토하여야 할 것이다. 보통기재배에 있어서는 수원에서의 6개년간 성적에 의하면 적산온도와 출수일수간에 유의적상관을 인정할 수 없었고, 각도에서의 12개년간의 결과에 의하면 파종후 70일간의 적산온도와 출수일수간에 품종에 따라서는 유의적인 상관이 있는 것과 없는 것이 있으며, 지역저긴 차이는 인정할 수 없었다. 등은 조파의 경우에 높은 수량을 보이는 품종들이었다. 4. 품종별 수량이 파종기에 따라서 변동하는 경향을 보면 Table 4와 같이 대체로 조생종에 있어서는 파종기 연장에 따라 수량 감소의 정도가 낮고 도리어 조파보다 만파의 경우에 좋은 성적을 나타 내었으나 중생종, 만생종일수록 파종기 연장에 의한 수량 감소의 정도가 높았다. 옥면과 같은 극만생종 품종은 조반의 경우라도 상해 등으로 본실험지의 기후조건 하에서는 경제적 재배가 곤란하다고 믿는다. 따라서 조생종에 있어서는 5월 이후의 만파의 경우에, 중, 만생종에 있어서는 4월보다 도리어 5월 파종의 경우에 좋은 성적을 나타내는 경향이 있으나 품종별 파종 최적기 등의 결정문제는 앞으로 해결되어야 할 한 과제가 될 수 있을 것이라 하겠다.의 일수가 길면 신고비가 높았다. 있다. 인텔리전스(intelligence)에 따라 분류했을 경우, 모던, 엘레강스, 클래식, 소피스티케이트 등은 엘리트적 성향으로 캐주얼, 내추럴은 대중적 성향으로 분류된다. cluster에서 구현하였다. 그 결과 특정 노드의 성능이 다른 것에 비해 현저하게 떨어질 때 전체적인 알고리즘의 수렴 속도가 떨어지는 것을 상당히 완화할 수 있음이 밝혀졌다., 2001).의 특징이라 할 수 있겠다. 대한 자부심과 국제 사회에서 차별화 할 수 있는 한국 복식 디자인에 독창성과 창조성을 표현하는 중요한 영역임을 인식할 수 있었다.와 보호인자를 재확인할 필요가 있다고 보며 본 연구의 결과는 지역민의 대장직장암 예방을 위한 영양교육 자료로서 활용될 수 있다고 본다. 관여도에 영향을