Insects possess two distinct acetylcholinesterases (AChE1 vs. AChE2), which are encoded by two paralogous loci originated from duplication. Kinetic analyses of several insect AChEs revealed that both AChE1 and AChE2 retain common catalytic properties of AChE but subtle kinetic differences also exist between these two AChEs. To understand how selection pressure has shaped the protein structure of AChEs and affected their function during evolution, we measured and compared the nucleotide diversity (Pi) and amino acid site-specific selection pressure between AChE1 and AChE2 from various insects. Highly conserved were the majority of the amino acid residues involved in forming the essential domains, including peripheral anionic site (PAS), and little differences were revealed between AChE1 and AChE2, suggesting the presence of strong purifying selection pressure over these essential residues. Interestingly, the EF-hand like motif was mostly found in the AChE1 lineage but not in AChE2. In addition, a unique amino acid difference in the PAS (D72 vs. Y72) was highly conserved between AChE1 and AChE2. Three-dimensional modeling of insect AChEs by particularly focusing on the PAS revealed that a subtle but consistent structural alteration in the active site topology was caused by the PAS amino acid substitution. Taken together, despite the long evolutionary history and low overall sequence similarity, both insect AChE1 and AChE2 still share a extremely high degree of structural and functional conservation, indicative of a strong purifying selection pressure. Nevertheless, only a small change in the PAS, appears to be associated with a local but significant alteration of AChE2 structure, which in turn drives the functional differentiation of AChE.
Linear and nonlinear models are available to simulate the effect of mine blasting. And the results are changed by selection of each model. Plaxis 8.0, FLAC 4.0 are used in this study for simulating blasting pressure. These programs offer linear model and nonlinear model. Linear model can properly simulate loss of impact wave in plastic failure region based on comparison of site vibration measurement and numerical analysis iteratively.