다결정성 ZIF-8 분리막의 C3H6/C3H8 kinetic 분리 성능 향상을 목적으로 상대적으로 부피가 큰 2, 4-dimethylimidazole (dmIm)이 ZIF-8 구조 내 2-methylimidazole들을 일부 대체한 혼합 리간드 ZIF-8 유사체 분리막을 이차성장법을 이용 하여 제조하였다. 25°C, 1 bar의 feed 압력에서 C3H6/C3H8 (50/50, V/V) 혼합가스를 대상으로 측정된 분리막의 선택도는 ~180이었으며, 이는 기 보고된 대부분의 다결정성 ZIF-8 분리막들의 선택도보다 높았다. 선택도 향상의 원인인 ZIF-8 구조 내 dmIm 도입으로 인한 기공 입구 크기의 축소를 77 K에서의 질소 등온흡착실험과 Maxwell-Stefan model을 이용하여 C3H6 와 C3H8 막투과도 데이터로부터 계산된 확산계수들을 통해 증명하였다.
PIM-1 (polymer intrinsic microporosity-1)은 뒤틀린 구조에 기인한 높은 기체 투과 특성을 가지고 있기 때문에 기 체 분리막 소재 중 하나로 활발히 연구되어졌다. 높은 기체 투과 특성의 장점에도 불구하고 높지 않은 기체 선택성의 한계점 이 존재함에 따라 본 연구에서는 PIM-1 분리막에 PEG/PPG-CN을 첨가함으로써 CO2의 용해도 증가에 따른 기체 선택도를 높이고 열처리를 진행하여 PIM-1과 PEG/PPG-CN의 사이아노기가 트라이아진으로 전환되는 재배열을 유도하였다. 그 결과 2 wt%의 PEG/PPG-CN이 첨가되고 열처리된 PIM-1 분리막의 성능은 열처리만 된 PIM-1 분리막과 비교하였을 때 단일 및 혼 합 기체 조건에서 더 높은 이산화탄소의 투과도와 선택도를 가지는 것으로 측정되었다. 혼합 기체 조건에서는 단일 기체 조 건에서 보다 높은 이산화탄소 투과도와 선택도를 보이며 실제 기체 분리 공정의 적용 가능성이 높다는 것을 확인하였으며 트 라이아진의 가교에 의하여 기체 분리막이 가소화 저항성(anti-plasticization)을 가지는 것으로 확인되었다.
콩은 높은 단백질 함량과 다양한 기능적 특성으로 인해 식품 및 사료 산업에 필수적인 작물이다. 그러나 농촌 인구의 고령화와 저렴한 수입 콩으로 인해 국내 콩 생산량은 꾸준히 감소하고 있다. 이러한 문제를 해결하기 위해서는 농업 기계 기술의 발전이 필수적이며, 특히 콩수확기의 선별 메커니즘을 개선하는 것이 중요하다. 따라서 본 연구는 CFD-DEM 결합 시뮬레이션을 사용하여 콩수확기의 선별장치 내의 유동 역학과 입자 움직임을 분석하여 선별 효율성을 향상시키는 것을 목표로 했다. 경남농업기술원에서 재배한 진풍 콩(Glycine max (L.) Merrill) 품종을 실험에 사용하였다. 선별장치는 콩, 콩대, 줄기를 분리하여 콩알만 수집하도록 설계되었다. 실험 중에는 콩 줄기를 균일하게 투입하여 분리율과 수집률을 측정하였다. 또한 유동 분석을 위해 표준 k-ε 난류 모델을 사용하였으며, CFD-DEM 결합 방법을 사용하여 선별 장치 내의 내부 유동과 입자 움직임을 시뮬레이션하였다. 추가로 CFD 분석 결과를 DEM 시뮬레이션에 활용하여 Ganser 항력 모델을 적용하여 콩과 콩대의 분리 특성을 분석하였다. 마지막으로 CFD-DEM 결합 시뮬레이션을 통해 콩수확기의 선별 장치 성능을 평가하고 최적의 팬 회전속도를 결정하였다. 실험에서 팬 회전속도는 각각 900 rpm, 1,000 rpm, 1,100 rpm, 1,200 rpm으로 설정하였다. 실제 선별장치에서 측정한 풍구 회전 시의 공기 유속과 시뮬레이션 에서 팬 회전으로 발생한 공기 유속 간의 RMSE 값은 0.64 m/s에서 1.12 m/s로 나타났다. 풍구 회전수에 대한 콩의 수집률을 시뮬레이션 결과 풍구 회전수가 증가할수록 수집률이 감소했으며, 900 rpm일 때 최대 94.08%의 수집률을 보였다. 콩대와 콩줄기 분리율의 경우 900 rpm과 1,000 rpm에서 55%~60%로 낮은 효율을 보였다. 1,100 rpm에서 86.38%, 1,200 rpm일 때 86.14%의 분리율이 측정되었다. 콩 수집률과 콩대 분리율 모두에서 최적의 성능을 발휘하려면, 풍구 회전수는 1,100 rpm이 적절한 것으로 보인다.
본 연구에서는 전하 이동 특성을 가지는 분자[쿠마린(C)-DNP]의 흡수 스펙트럼을 정확하게 예측하기 위해 장거 리 보정 밀도 범함수 이론 (long-range corrected density functional theory, LC-DFT)인 LC-BLYP의 범위 분리 매개변수 (μ)를 여러 가지 피팅 방법을 이용하여 최적화하였다. 기체 상태의 Koopmans 이론을 기반으로 최적화된 μ값은 실험적 흡수 피크에 비해 청색 이동(blue-shift)되는 경향성을, 반대로 용매 환경에서 최적화된 μ값은 과도하게 적색 이동 (red-shift)이 되는 경향성을 보였다. 반면, 실험적 데이터에 맞춰 조정된 μ값은 흡수 스펙트럼의 피크 위치와 세기를 가 장 고정확도로 재현하였으며, 특히 C-DNP와 C-OH 분자에서 나타나는 최대 흡수 피크 에너지의 차이를 잘 예측하였 다. C-DNP의 HOMO와 LUMO 전자 분포는 모든 μ값에서 일정한 모양(shape)을 가지고 있었으며, HOMO에서 LUMO 의 전이는 C에서 DNP로의 분자 내 전하 이동(Intramolecular Charge Transfer, ICT)임을 보였다.
멤브레인 기술은 폐수 처리, 담수화, 혈액 투석 등의 분리 공정에서 사용되고 있다. 하지만, 고분자 멤브레인을 만 들기 위해 사용되는 비용매상전이 방식에서 환경에 유해하고 독성인 유기 용매를 사용한다는 문제점이 있다. 따라서 비용매 상전이 방식에서 사용되는 유기 용매를 물로 대체해 고분자 멤브레인을 제작하는 aqueous phase separation (APS) 방법이 주 목받고 있다. 본 총설에서는 APS의 원리와 APS를 통한 멤브레인의 제작 공정을 소개하고자 한다. 멤브레인의 구조는 단량체 의 비율, 수용액의 pH와 염 농도 차이, 캐스팅 용액의 점도, 가교제 농도를 통해 조절할 수 있다.