검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper examined the dynamic instability of a shallow arch according to the response characteristics when nearing critical loads. The frequency changing feathers of the time-domain increasing the loads are analyzed using Fast Fourier Transformation (FFT), while the response signal around the critical loads are analyzed using Hilbert-Huang Transformation (HHT). This study reveals that the models with an arch shape of h = 3 or higher exhibit buckling, which is very sensitive to the asymmetric initial conditions. Also, the critical buckling load increases as the shape increases, with its feather varying depending on the asymmetric initial conditions. Decomposition results show the decrease in predominant frequency before the threshold as the load increases, and the predominant period doubles at the critical level. In the vicinity of the critical level, sections rapidly manifest the displacement increase, with the changes in Instantaneous Frequency (IF) and Instant Energy (IE) becoming apparent.
        4,000원
        2.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The structural design of arch roofs or bridges requires the analysis of their unstable behaviors depending on certain parameters defined in the arch shape. Their maintenance should estimate the parameters from observed data. However, since the critical parameters exist in the equilibrium paths of the arch, and a small change in such the parameters causes a significant change in their behaviors. Thus, estimation to find the critical ones should be carried out using a global search algorithm. In this paper we study the parameter estimation for a shallow arch by a quantum-inspired evolution algorithm. A cost functional to estimate the system parameters included in the arch consists of the difference between the observed signal and the estimated signal of the arch system. The design variables are shape, external load and damping constant in the arch system. We provide theoretical and numerical examples for estimation of the parameters from both contaminated data and pure data.
        4,000원