Hydrothermal and ultrasonic processes were used in this study to synthesize a single-atom Cu anchored on t-BaTiO3. The resulting material effectively employs vibration energy for the piezoelectric (PE) catalytic degradation of pollutants. The phase and microstructure of the sample were analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM), and it was found that the sample had a tetragonal perovskite structure with uniform grain size. The nanomaterial achieved a considerable increase in tetracycline degradation rate (approximately 95 % within 7 h) when subjected to mechanical vibration. In contrast, pure BaTiO3 demonstrated a degradation rate of 56.7 %. A significant number of piezoinduced negative charge carriers, electrons, can leak out to the Cu-doped BaTiO3 interface due to Cu’s exceptional conductivity. As a result, a single-atom Cu catalyst can facilitate the separation of these electrons, resulting in synergistic catalysis. By demonstrating a viable approach for improving ultrasonic and PE materials this research highlights the benefits of combining ultrasonic technology and the PE effect.
Exploring highly efficient, and low-cost oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts is extremely vital for the commercial application of advanced energy storage and conversion devices. Herein, a series of graphene-like C2N supported TMx@C2N, (TM = Fe, Co, Ni, and Cu, x = 1, 2) single- and dual-atom catalysts are designed. Their catalytic performance is systematically evaluated by means of spin-polarized density functional theory (DFT) computations coupled with hydrogen electrode model. Regulating metal atom and pairs can widely tune the catalytic performance. The most promising ORR/OER bifunctional activity can be realized on Cu2@ C2N with lowest overpotential of 0.46 and 0.38 V for ORR and OER, respectively. Ni2@ C2N and Ni@C2N can also exhibit good bifunctional activity through effectively balancing the adsorption strength of intermediates. The correlation of reaction overpotential with adsorption free energy is well established to track the activity and reveal the activity origin, indicating that catalytic activity is intrinsically governed by the adsorption strength of reaction intermediates. The key to achieve high catalytic activity is to effectively balance the adsorption of multiple reactive intermediates by means of the synergetic effect of suitably screened bimetal atoms. Our results also demonstrate that lattice strain can effectively regulate the adsorption free energies of reaction intermediates, regarding it as an efficient strategy to tune ORR/OER activity. This study could provide a significant guidance for the discovery and design of highly active noble-metal-free carbon-based ORR/OER catalysts.
Single-atom Pd clusters anchored on t-BaTiO3 material was synthesized using hydrothermal and ultrasonic methods for the effective piezoelectric catalytic degradation of pollutants using vibration energy. XRD patterns of BaTiO3 loaded with monoatomic Pd were obtained before and after calcining, and showed typical cubic-phase BTO. TEM and HAADF-STEM images indicated single-atom Pd clusters were successfully introduced into the BaTiO3. The piezoelectric current density of the prepared Pd-BaTiO3 binary composite was significantly higher than that of the pristine BaTiO3. Under mechanical vibration, the nanomaterial exhibited a tetracycline decomposition rate of ~95 % within 7 h, which is much higher than the degradation rate of 56.7 % observed with pure BaTiO3. Many of the piezo-induced electrons escaped to the Pd-doped BaTiO3 interface because of Pd’s excellent conductivity. Single-atom Pd clusters help promote the separation of the piezo-induced electrons, thereby achieving synergistic catalysis. This work demonstrates the feasibility of combining ultrasonic technology with the piezoelectric effect and provides a promising strategy for the development of ultrasonic and piezoelectric materials.
Developing the high-performance semiconductor photocatalytic materials is an eternal topic under the background of the current energy and environment requirements. In recent years, single-atom photocatalysts (SAPCs) have been brought a lot of attention in energy conversion and environmental purification because of their unique characteristics and properties, including the unique coordination patterns, outstanding atomic utilization, quantum confinement effects, high catalytic activity, etc. Hence, this critical review focuses on the summarized various synthetic methods and the recent important applications of SAPCs, including photocatalytic H2 evolution (PHE) from water splitting, photocatalytic CO2 reduction, photodegradation of organic pollutants, etc. The prospects and challenges for future research topics of SAPCs with excellent activity and stability for various photocatalytic applications are prospected at the end of this review. We sincerely expect that this critical review can promote deep-level insight into the SAPCs subject for the future significant applications in other fields.
The electrochemical reduction of carbon dioxide (CO2) to value-added products is a remarkable approach for mitigating CO2 emissions caused by the excessive consumption of fossil fuels. However, achieving the electrocatalytic reduction of CO2 still faces some bottlenecks, including the large overpotential, undesirable selectivity, and slow electron transfer kinetics. Various electrocatalysts including metals, metals oxides, alloys, and single-atom catalysts have been widely researched to suppress HER performance, reduce overpotential and enhance the selectivity of CO2RR over the last few decades. Among them, single-atom catalysts (SACs) have attracted a great deal of interest because of their advantages over traditional electrocatalysts such as maximized atomic utilization, tunable coordination environments and unique electronic structures. Herein, we discuss the mechanisms involved in the electroreduction of CO2 to carbon monoxide (CO) and the fundamental concepts related to electrocatalysis. Then, we present an overview of recent advances in the design of high-performance noble and non-noble singleatom catalysts for the CO2 reduction reaction.
Metal–organic frameworks (MOFs) are widely used as supports for single-atom catalysts (SACs) owing to their high specific surface area, porosity, and ordered metal–ligand structure. Their activity can be increased by increasing the number of electrochemically accessible active sites via the formation of atomically dispersed metal catalysts (M–Nx) that coordinate with nitrogen atoms on the MOF. Herein, we introduce the relationship between the size of the MOF as a starting material and the catalytic activity for the oxygen reduction reaction in alkaline media. The morphology and features of the MOFs are critically dependent on their size. Remarkably, cage-like MOFs below 33 nm are converted into collapsed structures and are connected between each MOF, even carbon fiber- or tube-like features, after carbonization. SACs derived from medium-sized MOFs exhibit excellent activity and are comparable to commercial Pt/C catalysts owing to their porous structure. Therefore, we believed that controlling the size of MOFs containing active atoms is an effective method of modulating the morphological properties of the support and even the number of active sites that are closely related to the activity.