Springtails (class Collembola) play a crucial role in soil ecosystems. They are commonly used as standard species in soil toxicity assessments. According to the ISO 11267 guidelines established by the International Organization for Standardization (ISO), Allonychiurus kimi uses adult survival and juvenile production as toxicity assessment endpoint. Conventional toxicity assessment methods require manually counting adults and larvae under a microscope after experiments, which is time-consuming and laborintensive. To overcome these limitations, this study developed a model using YOLOv8 to detect and count both adults and juveniles of A. kimi. An AI model was trained using a training dataset and evaluated using a validation dataset. Both training and validation datasets used for AI model were created by picturing plate images that included adults and larvae. Statistical comparison of validation dataset showed no significant difference between manual and automatic counts. Additionally, the model achieved high accuracies (Precision=1.0, Recall=0.95 for adults; Precision=0.95, Recall=0.83 for juveniles). This indicates that the model can successfully detect objects. Additionally, the system can automatically measure body areas of individuals, enabling more detailed assessments related to growth and development. Therefore, this study establishes that AI-based counting methods in toxicity assessments with offer high levels of accuracy and efficiency can effectively replace traditional manual counting methods. This method significantly enhances the efficiency of large-scale toxicity evaluations while reducing researcher workload.
Forest resource development including plantation and thinning has severely influenced on the forest ecosystems. In this study, we compared differences of soil invertebrate communities between a larch planted forest and a natural deciduous forest. Soil invertebrates were collected at 6 sampling sites in the natural deciduous forest and at 9 sampling sites in the larch planted forest in June and September, 2013. Each study site was set in 1 ha and soil samples were collected using a soil core (5.5 cm diameter and 4.5 cm height). After sampling soil invertebrates, the invertebrates were extracted using Tullgren extractor for 72 hours. In total, 1,194 individuals and 22 taxa of soil invertebrates were identified in this study. Among them, Collembola was the most dominant taxa (41% of abundance). Abundance of the larch planted forest was higher two times than that of the natural deciduous forest. The results of this study provide fundamental information on soil invertebrate fauna before the forest managements. In the further study, we will examine the effects of various types of forest management on the community of soil invertebrates.