This study investigated the effect of variation in the number of somaticcell- cloned embryos and their developmental stage at transfer on pregnancy, as well as the influence of the estrus status of recipient pigs on in vivo development of cloned porcine embryos after embryo transfer. For somatic cell nuclear transfer (SCNT), fibroblast cells were obtained from a male porcine fetus. Recipient oocytes were collected from prepubertal gilts at a local abattoir and then cultured. After SCNT, reconstructed embryos of different numbers and developmental stages were transferred into recipient pigs. The developmental stage of the cloned embryos and the number of transferred embryos per surrogate showed no significant differences in terms of the resulting cloning efficiency. However, the pregnancy rate improved gradually as the number of transferred cloned embryos was increased from 100- 150 or 151-200 to 201-300 per recipient. In pre-, peri-, and post-ovulation stages, pregnancy rates of 28.6%, 41.8%, and 67.6% and 16, 52, and 74 offspring were recorded, respectively. The number of cloned embryos and estrus status of the recipient pig at the time of transfer of the cloned embryo affect the efficiency of pig production; therefore, these variables should be particularly considered in order to increase the efficiency of somatic cell pig cloning.
The establishment of porcine embryonic stem cells (ESCs) from porcine somatic cell nuclear transfer (SCNT) blastocysts is influenced by in vitro culture day of porcine reconstructed embryo and feeder cell type. Therefore, the objective of the present study was to determine the optimal in vitro culture period for reconstructed porcine SCNT embryos and mouse embryonic fibroblast (MEF) feeder cell type for enhancing colony formation efficiency from the inner cell mass (ICM) of porcine SCNT blastocysts and their outgrowth. As the results, porcine SCNT blastocysts produced through in vitro culture of the reconstructed embryos for 8 days showed significantly increased efficiency in the formation of colonies, compared to those for 7 days. Moreover, MEF feeder cells derived from outbred ICR mice showed numerically the highest efficiency of colony formation in blastocysts produced through in vitro culture of porcine SCNT embryos for 8 days and porcine ESCs with typical ESC morphology were maintained more successfully over Passage 2 on outbred ICR mice-derived MEF feeder cells than on MEF feeder cells derived from inbred C57BL/6 and hybrid B6CBAF1 mice. Overall, the harmonization of porcine SCNT blastocysts produced through in vitro culture of the reconstructed embryos for 8 days and MEF feeder cells derived from outbred ICR mice will greatly contribute to the successful establishment of ESCs derived from porcine SCNT blastocysts.
The osmolarity of a medium that is commonly used for in vitro culture (IVC) of oocytes and embryos is lower than that of oviductal fluid in pigs. In vivo oocytes and embryos can resist high osmolarities to some extent due to the presence of organic osmolytes such as glycine and alanine. These amino acids act as a protective shield to maintain the shape and viability in high osmotic environments. The aim of this study was to determine the effects of glycine or/and alanine in medium with two different osmolarities (280 and 320 mOsm) during IVC on embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) in pigs. To this end, IVC was divided into two stages; the 0-2 and 3-7 days of IVC. In each stage, embryos were cultured in medium with 280, 320, or 360 mOsm and their combinations with or without glycine or/and alanine according to the experimental design.
Treatment groups were termed as, for example, "T(osmolarity of a medium used in 0-2 days of IVC)-(osmolarity of a medium used in 3-7 days of IVC)" T280-280 was served as control. When PA embryos were cultured in medium with various osmolarities, T320-280 showed a significantly higher blastocyst formation (29.0%) than control (22.2%) and T360-360 groups (6.9%). Glycine treatment in T320-280 significantly increased blastocyst formation (50.4%) compared to T320-280 only (36.5%) while no synergistic was observed after treatment with glycine and alanine together in T320-280 (45.7%). In contrast to PA embryonic development, the stimulating effect by the culture in T320-280 was not observed in SCNT blastocyst development (27.6% and 23.7% in T280-280 and T320-280, respectively) whereas the number of inner cell mass cells was significantly increased in T320-280 (6.1 cells vs. 9.6 cells). Glycine treatment significantly improved blastocyst formation of SCNT embryos in both T280-280 (27.6% vs. 38.0%) and T320-280 (23.7% vs. 35.3%). Our results demonstrate that IVC in T320-280 and treatment with glycine improves blastocyst formation of PA and SCNT embryos in pigs.
Polo-like kinase 1 (Plk1) has multiple roles in somatic cell and mammalian oocyte division. In mice, Plk1 distributes to the centromeres from prophase to anaphase and compose spindle apparatus in mitosis stages. Somatic cell nuclear transfer (SCNT) has diverse advantages. However, low cloning efficiency of SCNT procedure causes difficulty to application. The causes of this low efficiency are still unclear. However, they are attributed to the cumulative results of several biological and technical factors. In this study, Plk1, a biological factor, was investigated. B6D2F1 mice (7 weeks old) were superovulated with 10 IU of pregnant mare’s serum gonadotropin and 9 U of human chorionic gonadotropin (HCG) 48 hr later. The oocytes were collected 14 hr after HCG injection and cultured on potassium simplex optimized medium. The BI2536, Plk1-specific inhibitor, was used to understand the influence of Plk1. Also, the embryos were assessed by immunofluorescence. All BI2536-treated embryos failed to the first mitotic division. It showed Plk1 has a critical role in the first mitotic division of the mouse embryo. Moreover, there were significant differences between the control and SCNT embryos in the patterns of Plk1. All SCNT embryos which failed 2-cell development presented incorrect positioning and low expression of Plk1. On the other hand, the control embryos which failed to 2-cell division showed only low expression of Plk1. Taken together, this results demonstrate that Plk1 is critical for successful mitotic division of mouse embryos. Also, correct localization of Plk1 has crucial effect in the development of murine SCNT embryos.
The purpose of this study is to examined the electrofusion and activation conditions for the production of porcine somatic cell nuclear transfer (SCNT) embryos. In this study, immature oocytes were cultured in TCM-199 with and without hormones for 22 hours. Skin fibroblasts cells of porcine were transferred into the perivitelline space of enucleated in vitro matured oocytes. Cell fusion was performed with two different pulses that each one pulse (DC) of 1.1 kV/cm or 1.5 kV/cm for 30 μsec. After fusion subsequent activation were divided into three groups; non-treatment (control) and treatment with 2 mM 6-DMAP or 7.5 μg/ml cytochalasin B for 4 hours. Transferred embryos were cultured in PZM-3 (Porcine Zygote Medium-3) in 5% CO₂ and 95% air at 39℃ for 7 day. Apoptosis-related genes (Caspase-3, BCL-2, mTOR, and MMP-2) were analyzed by immunofluorescence staining. There was no significant difference between two different electrofusion stimuli in the cleavage rate; 64.9±4.8% in 1.1 kV/cm and 62.7±4.0% in 1.5 kV/cm. However, blastocyst formation rate (%) was significantly different among three different activation groups (no treatment, 2 mM 6-DMAP or 7.5 μg/ml cytochalasin B) combined with electrofusion of 1.1 kV/cm. The blastocyst formation rate was 12.6±2.5, 20.0±5.0, and 34.9±4.3% in control, 2 mM 6-DMAP, and 7.5 μg/ml cytochalasin B, respectively. Immunofluorescence data showed that expression levels of caspase-3 in SCNT embryos undeveloped to blastocyst stage were higher than those in the blastocyst stage embryos. Expression levels of Bcl-2 in blastocyst stage embryos were higher than those in the arrested SCNT embryos. These results showed that the combination of an electric pulse (1.1 kV/cm for 30 μsec) and 7.5 μg/ml cytochalasin B treatment was effective for production of the porcine SCNT embryos.
Somatic cell nuclear transfer (SCNT) is the technique which generates embryos by transferring diploid nucleus into an enucleated oocyte, it has produced specific animals successfully in a variety of species. However, the developmental capacity of SCNT embryos is still relatively lower than that of embryos produced in vivo. Oocyte is a kind of lipid rich cells, its quality limits the efficiency of embryo production. L-carnitine is a co-enzyme facilitating the transportation of long chain fatty acids across the inner mitochondria membrane where fatty acids are used for generating adenosine triphosphate (ATP) via beta-oxidation. It also has antioxidant actions which may protect mitochondrial membranes and DNA against damage induced by reactive oxygen species (ROS). Whether L-carnitine is functional in bovine SCNT embryos are unknown. Therefore, the objective of this study was to examine the effects of L-carnitine on oocyte maturation and developmental competence of subsequent SCNT embryos. L-carnitine was supplemented during IVM, then intracellular ROS and GSH levels, mitochondrial activity, gene expression of COCs were analyzed at the end of IVM. SCNT embryos were produced subsequently, apoptosis detection and gene expression evaluation were performed in blastocysts. In the results, treatments with 1.5 mM and 3 mM L-carnitine significantly improved maturation rates (P<0.05). Treatments with 3 mM L-carnitine effectively induced improvement in nuclear maturation, intracellular GSH levels and mitochondrial activity, as well as a reduction in intracellular ROS levels (P<0.05). mRNA levels of CPT1A, ACAA1, ACAA2, AREG, EREG, SOD1, GPX4, GLUT1 and CDC2 transcripts were effectively up-regulated by 3 mM L-carnitine treatments (P < 0.05). Similarly, 3mM L-carnitine induced an increase in blastocyst developmental rates and an improvement in blastocyst quality (P<0.05). Our study indicates that L-carnitine treatment during IVM improves oocyte nuclear maturation and subsequent SCNT embryo development.
Polo-like kinase 1 (plk1) shows multiple events of somatic cell and mammalian oocyte division. In mice, Plk1 distributes to the centromeres from prophase to anaphase and compose spindle apparatus at different stages of mitosis in spindle organization. Somatic cell nuclear transfer (SCNT) has a number of advantages however it is difficult to apply to basic or translational researches due to its low cloning efficiency. The causes of this low cloning efficiency are unclear. However, they are attributed to the cumulative results of several biological and technical factors. In this study, a biological factor plk1 was investigated. B6D2F1 mice (7–8 weeks old) were superovulated with 10 IU of pregnant mare’s serum gonadotropin and 9 U of human chorionic gonadotropin (HCG) 48 hr later. The oocytes were then collected 14 hr after HCG injection and cultured on potassium simplex optimized medium (KSOM). The plk1-specific inhibitor BI2536 was used to understand the influence of plk1. The 2-cell stage embryos were assessed by fluorescence immunoassay. In consequence, all BI2536-treated embryos failed in the first mitotic division which showed plk1 have critical role in the first mitotic division of the mouse embryo. SCNT requires enucleation of oocyte and injecting a donor cell into the enucleated cytoplast. In this process, a respectable amount of plk1 that co-localize with nucleus may be removed together. Fluorescence immunoassay and qPCR were used to monitor the change of plk1 level during SCNT. There was significant difference between the control and enucleated embryos in the level of plk1. In all division-failure 2-cell embryos, incorrect positioning of plk1 was found. Taken together, this results demonstrate that plk1 is critical for successful mitotic division of mouse SCNT 1-cell embryos.
Somatic cell nuclear transfer (SCNT) technique is a key point of producing transgenic animal disease models. During in vitro production of SCNT embryo, the quality of matured oocytes are one of the important factors that regulate embryo developmental capacity. In preliminary test, we confirmed the effect of fibroblast growth factor 10 (FGF10) on porcine oocyte maturation. In this study, we investigated the developmental potential of SCNT embryos treated with the 10 ng/ml FGF10 (10 F) during in vitro maturation of recipient oocytes. The polar body emission rate was significantly higher in the 10 F treated group than control group. After SCNT, although the rate of fusion was no significant difference, the rate of cleavage and blastocyst formation was significantly increased in the 10 F treated group (p<0.05). In 10 F treated group, the total cell number was increased and the percentage of apoptotic cell was decreased in the blastocyst stage at day 7 (p<0.1). The transcription level of apoptosis relative gene, Casp3 was significantly decreased, while anti-apoptosis gene BCL2l1 was increased in the 10 F treated group compared to control group. The 10 F treated group was highly expressed the reprogramming related genes, Sox2 and POU5f1. Also, the first cleaving time was more faster and the percentage of cell block was significantly lower in 10 F treated group than in control group. In this study, we confirmed that 10 ng/ml FGF10 has effect on enhance the oocyte maturation and developmental capacity. These results demonstrate that FGF10 treatment can be used for in vitro development of porcine SCNT embryos and subsequent production of transgenic animal model.
The cloning efficiency is extremely low despite successful somatic cell nuclear transfer (SCNT) method producing cloned animals in several mammals. In general, faulty epigenetic modifications underlying the incomplete reprogramming of donor cell nuclei after SCNT mainly results in low cloning efficiency. The nuclear reprogramming process involves epigenetic modifications, such as DNA demethylation and histone acetylation, which may be an important factor in enhancing the cloning efficiency. Recently, the histone deacetylase inhibitors (HDACi), such as trichosatin A (TSA) and m-carboxycinnamic acid bishydroxamide (CBHA), to increase histone acetylation have been used to improve the developmental competence of SCNT embryos. Therefore, we compared the effects of TSA with CBHA on the in vitro developmental competence and pluripotency-related gene expression (Oct4, Nanog and Sox2) in porcine cloned blastocysts and histone acetylation pattern (H3K9ac). The porcine cloned embryos were treated with a 50nM concentration of TSA and 100μM concentration of CBHA during the in vitro early culture (10h) after cell fusion and then were assessed to cleavage rate, development to the blastocyst stage and pluripotency-related gene expression in NT blastocyst also, level of histone acetylation in zygote, 2cell, 4cell stage. As results, Although NT, TSA and CBHA treated NT embryos were not different between all groups for cleavage rates, the developmental competence to the blastocyst stage was significantly increased in CBHA treated embryos (22.7%) compared to that of normal NT and TSA treated NT embryos (8.1% and 15.4%)(p<0.05). In addition, all of pluripotent transcription factors (Oct4, Nanog and Sox2) were expressed in the CBHA treated NT embryos, however, Sox2 and Oct4 were expressed in TSA treated NT embryos and expression pattern of CBHA treated NT embryos is particularly similar to that of IVF embryos. Also, CBHA treated NT embryos were increased in level of histone acetylation (H3K9ac) at the zygote, 2-cell, 4-cell stage compared to those of NT and TSA treated NT embryos. In conclusion, the treatment of CBHA as a histone deacetylase inhibitor significantly increased the developmental competence of porcine NT embryos and pluripotency-related gene expressions(Oct4, Nanog and Sox2) in NT blastocysts and level of histone acetylation (H3K9ac).
We investigate the effect of L-glutathione (GSH), an antioxidant, treatment during the somatic cell nuclear transfer (SCNT) procedures on the in vitro development and DNA methylation status of bovine SCNT embryos. Bovine in vitro matured (IVM) oocytes were enucleated and electrofused with a donor cell, then activated by a combination of Ca-ionophore and 6-dimethylaminopurine. The recipient oocytes or reconstituted oocytes were treated with 50 μM GSH during these SCNT procedures from enucleation to activation treatment. The SCNT embryos were cultured for 7 days to evaluate the in vitro development, apoptosis and DNA methylation in blastocysts. The apoptosis was measured by TUNEL assay and caspase-3 activity assay. Methylated DNA of SCNT embryos at the blastocyst stages was detected using a 5-methylcytidine (5-MeC) antibody. The developmental rate to the blastocyst stage was significantly higher (P<0.05) in GSH treatment group (32.5±1.2%, 78/235) than that of non-treated control SCNT embryos (22.3±1.8%, 50/224). TUNEL assay revealed that the numbers of apoptotic cells in GSH treatment group (2.3±0.4%) were significantly lower (P<0.05) than that of control (3.8±0.6%). Relative caspase-3 activity of GSH treated group was 0.8±0.06 fold compared to that of control. DNA methylation status of blastocysts in GSH treatment group (13.1±0.5, pixels/ embryo) was significantly lower (P<0.05) than that of control (17.4±0.9, pixels/embryo). These results suggest that antioxidant GSH treatment during SCNT procedures can improve the embryonic development and reduce the apoptosis and DNA methylation level of bovine SCNT embryos, which may enhance the nuclear reprogramming of bovine SCNT embryos.
The technique of SCNT is now well established but still remains inefficient. The in vitro development of SCNT embryos is dependent upon numerous factors including the recipient cytoplast and karyoplast. Above all, the metaphase of the second meiotic division (MII) oocytes have typically become the recipient of choice. Generally high level of MPF present in MII oocytes induces the transferred nucleus to enter mitotic division precociously and causes NEBD and PCC, which may be the critical role for nuclear reprogramming. In the present study we investigated the in vitro development and pregnancy of White-Hanwoo SCNT embryos treated with caffeine (a protein kinase phosphatase inhibitor). As results, the treatment of 10 mM caffeine for 6 h significantly increased MPF activity in bovine oocytes but does not affect the developmental competence to the blastocyst stage in bovine SCNT embryos. However, a significant increase in the mean cell number of blastocysts and the frequency of pregnant on 150 days of White-Hanwoo SCNT embryos produced using caffeine treated cytoplasts was observed. These results indicated that the recipient cytoplast treated with caffeine for a short period prior to reconstruction of SCNT embryos is able to increase the frequency of pregnancy in cow.
This study was carried out to investigate effective condition for producing somatic cell nuclear transfer (SCNT) embryos of Jeju native cattle. As donor cells for SCNT, ear skin cells from Jeju native cattle were used. In experiment 1, the effect of recipient oocyte sources on the development of Jeju native cattle SCNT embryos were examined. Fusion rate of recipient oocyte and donor cell was not different between the Hanwoo and Holstein recipient oocytes (86.0% vs 89.9%). The rate of embryos developing to the blastocyst stage was significantly (p<0.05) higher in Hanwoo recipient oocytes than in Holstein recipient ones (28.2% vs 14.7%). Blastocysts derived from Hanwoo recipient oocytes contained higher numbers of total cells than those derived from Holstein ones ( vs ), although there were no significant difference. The mean proportion of apoptotic cells in blastocyst was not different between the sources of recipient oocytes. In experiment 2, the development of Jeju native cattle and Hanwoo SCNT embryos were compared. Hanwoo oocytes were used as the recipient oocytes. Fusion rate was not different between the Jeju native cattle and Hanwoo SCNT embryos (92.1% vs 92.9%). The blastocyst rate of SCNT embryos was significantly (p<0.05) lower in Jeju native cattle than in Hanwoo (16.9% vs 31.0%). Blastocysts derived from Jeju native cattle SCNT embryos contained smaller numbers of total cells than those derived from Hanwoo ones ( vs ), but there were no significant difference. The mean proportion of apoptotic cells in blastocyst was not different between the Jeju native cattle and Hanwoo SCNT embryos. The present study demonstrated that Hanwoo recipient oocytes were more effective in supporting production of Jeju native cattle SCNT embryos, although Jeju native cattle SCNT embryos showed reduced developmental capacity when compared to Hanwoo SCNT embryos.
The reactive oxygen species (ROS) generated during the somatic cell transfer nuclear (SCNT) procedures may cause the mitochondrial dysfunction and DNA damage, which may result in restricts the reprogramming of SCNT embryos and play a key direct role in apoptosis. The present study was conducted to investigate the effect of antioxidant treatment during the SCNT procedures on the inhibition of mitochondria and DNA damages in bovine SCNT embryos. The reconstituted oocytes were treated with antioxidants of 25 μM β-mercaptoethanol (β-ME) or 50 μM vitamin C (Vit. C) during the SCNT procedures. In vitro fertilization (IVF) was performed for controls. Mitochondrial morphology and membrane potential (ΔΨ) were evaluated by staining the embryos with MitoTracker Red or JC-1. Apoptosis was analyzed by Caspase-3 activity assay and TUNEL assay, and DNA fragmentation was measured by comet assay at the zygote stage. Mitochondrial morphology of non-treated SCNT embryos was diffused within cytoplasm without forming clumps, while the IVF embryos and antioxidant treated SCNT embryos were formed clumps. The ΔΨ of β-ME (1.3±0.1, red/green) and Vit. C-treated (1.4±0.2, red/green) SCNT embryos were significantly higher (p<0.05) than that of non-treated SCNT embryos (0.9±0.1, red/ green), which similar to that of IVF embryos (1.3±0.1, red/green). Caspase-3 activity was not difference among the groups. TUNEL assay also revealed that little apoptosis was occurred in SCNT embryos as well as IVF embryos regardless of antioxidant treatment. Comet tail lengths of β-ME and Vit. C-treated SCNT embryos (337.8±23.5 μm and 318.7 ±27.0 μm, respectively) were shorter than that of non-treated SCNT embryos (397.4± 21.4 μm) and similar to IVF embryos (323.3±10.6 μm). These results suggest that antioxidant treatment during SCNT procedures can inhibit the mitochondrial and DNA damages of bovine SCNT embryos.
The present study was conducted to examine the generation of reactive oxygen species (ROS) during micromanipulation procedures in bovine somatic cell nuclear transfer (SCNT) embryos. Bovine enucleated oocytes were electrofused with donor cells, activated by a combination of Ca-ionophore and 6-dimethylaminopurine culture. Oocytes and embryos were stained in dichlorodihydrofluorescein diacetate or 3'-(p-hydroxyphenyl) fluorescein dye and the H2O2 or ˙OH radical levels were measured. In vitro fertilization (IVF) was performed for controls. The samples were examined with a fluorescent microscope, and fluorescence intensity was analyzed in each oocyte and embryo. The H2O2 and ˙OH radical levels of reconstituted oocytes were increased during manipulation (37.2~49.7 and 51.0~55.2 pixels, respectively) as compared to those of mature oocytes (p<0.05). During early in vitro culture, the ROS levels of SCNT embryos were significantly higher than those of IVF embryos (p<0.05). These results suggest that the cellular stress during micromanipulation procedures can generate the ROS in bovine SCNT embryos.
The production of transgenic animals using somatic cell nuclear transfer (SCNT) has been widely described. A critical problem in the production of transgenic animals is the uncontrolled constitutive expression of the foreign gene which occasionally results in serious physiological disorders in the transgenic animal. In this study, we designed three different expression vectors that express the hEPO gene. hEPO is a hormone produced by the kidney that promotes the formation of red blood cells by the bone marrow. For the in vitro production of transgenic embryos, the different expression vectors were transduced into holstein ear fibroblast cells, respectively, and GFP expressed donor cells were transferred into enucleated oocytes, and then the reconstructed SCNT embryos were developed into pre-implantation stage. From three replicates, GFP expressed 112 transgenic SCNT embryos were produced. When their cleavage rate and blastocyst rate were compared with non-transgenic SCNT embryos, the results were presented into 73.2% vs. 76.9% and 26.8% vs. 30.6%, respectively, there were no differences. Also, total cell number and ICM cell numbers of day 8 blastocysts were statistically not different between the transgenic SCNT groups (120.6±7.9 and 31.4±8.2) and control SCNT group (128.3±4.8 and 35.3±4.0). The GFP expression levels were presented consecutively high during the culture of transgenic SCNT embryos. By analysis of semi-quantitative RT-PCR, the relative expression levels of hEPO mRNA and pluripotent gene were determined. These results demonstrated that the hEPO expressed transgenic bovine embryos can be efficiently produced in vitro by SCNT technique, while their potential of cloned animal production have to be examined in further study.