After the major radioactivation structures (RPV, Core, SG, etc.) due to neutron irradiation from the nuclear fuel in the reactor are permanently shut down, numerous nuclides that emit alpha-rays, beta-rays, gamma-rays, etc. exist within the radioactive structures. In this study, nuclides were selected to evaluate the source term for worker exposure management (external exposure) at the time of decommissioning. The selection of nuclides was derived by sequentially considering the four steps. In the first stage, the classification of isotopes of major nuclides generated from the radiation of fission products, neutron-radiated products, coolant-induced corrosion products, and other impurities was considered as a step to select evaluation nuclides in major primary system structures. As a second step, in order to select the major radionuclides to be considered at the time of decommissioning, it is necessary to select the nuclides considering their half-life. Considering this, nuclides that were less than 5 years after permanent suspension were excluded. As a third step, since the purpose of reducing worker exposure during decommissioning is significant, nuclides that emit gamma rays when decaying were selected. As a final step, it is a material made by radiation from the fuel rod of the reactor and is often a fission product found in the event of a Severe accident at a nuclear power plant, and is excluded from the nuclide for evaluation at the time of decommissioning is excluded. The final selected Co-60 is a nuclide that emits high-energy gamma rays and was classified as a major nuclide that affects the reduction of radiation exposure to decommissioning workers. In the future, based on the nuclide selection results derived from this study, we plan to study the evaluation of worker radiation exposure from crud to decommissioning workers by deriving evaluation results of crud and radioactive source terms within the reactor core.
본 연구에서는 마른하도 및 복잡한 지형에서의 파의 전파와 같은 수공학 분야에서 해결하기 어려운 문제를 해석하기 위한 고정확도 2차원 수치모형을 개발하기 위해, unsplit 유한체적기법과 HLLC Riemann 해법을 이용한 흐름율 계산으로 쌍곡선형 적분 보존형의 2차원 천수방정식을 해석하였다. Unsplit 기법의 적용을 위해 하상경사항은 발산정리를 이용하여 이산화한 형태를 적용하였으며, 흐름율과 생성항의 균형을 이루기 위해 수면경사법을 시간과 공간에
상류이송기법은 불연속 흐름을 해석할 수 있기 때문에 댐붕괴류, 천이류 등의 해석에 많이 이용되고 있다. 그러나 상류이송기법은 생성항 처리과정에서 발생하는 오차로 인해 불균일한 단면을 가진 자연하천에는 거의 적용되지 못하고 단순화된 하도에만 주로 적용되어 왔다. 본 논문에서는 생성항의 차분화를 위해서 정규화된 Jacobian을 사용하는 상류이송형 생성항 처리기법을 개발하였다. 적용 결과 본 연구에서 제안된 생성항 처리기법이 정확하면서 효율적인 것으로 나타