We investigate the properties of AGB and post-AGB (PAGB) stars, planetary nebulae, and young stellar objects (YSOs) in our Galaxy through an analysis of observational data covering visual and infrared (IR) wavelengths. Utilizing datasets from IRAS, 2MASS, AllWISE, Gaia DR3, and the SIMBAD object database, we perform an in-depth comparison between observational data and theoretical models. For this comparison, we present various color-magnitude diagrams (CMDs) in visual and IR bands, as well as IR two-color diagrams (2CDs). Our results demonstrate that the CMDs, incorporating the latest distance and extinction data from Gaia DR3 for a majority of sample stars, are effective in distinguishing different classes of stars. To improve the precision of our analysis, we apply theoretical radiative transfer models for dust shells around AGB and PAGB stars. A thorough comparison of the theoretical models with observations across various IR 2CDs and CMDs shows a significant agreement. We find that AGB and PAGB stars are among the brightest classes in visual and IR bands. Furthermore, most YSOs are clearly distinguishable from AGB stars on various IR CMDs, exhibiting fainter absolute magnitudes in IR bands.
We present various infrared two-color diagrams (2CDs) using WISE data for asymptotic giant branch (AGB) stars and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use the sample of 5036 AGB stars, 660 post-AGB stars, and 2748 PNe in our Galaxy. For each object, we cross-identify the IRAS, AKARI, WISE, and 2MASS counterparts. To investigate the spectral evolution from AGB stars to PNe, we compare the theoretical model tracks of AGB stars and post-AGB stars with the observations on the IR 2CDs. We find that the theoretical dust shell model tracks can roughly explain the observations of AGB stars, post-AGB stars, and PNe on the various IR 2CDs. WISE data are useful in studying the evolution of AGB stars and PNe, especially for dim objects. We find that most observed color indices generally increase during the evolution from AGB stars to PNe. We also find that Fe0.9Mg0.1O dust is useful to fit the observed WISE W3-W4 colors for O-rich AGB stars with thin dust shells.
We present a new catalog of AGB stars based on infrared two-color diagrams (2CDs) and known properties of the pulsations and spectra. We exclude some misclassified objects from previous catalogs. We identify color areas in two IR 2CDs where most O-rich and C-rich objects listed in previous catalogs of AGB stars are found. By collecting new objects in these color selection areas in the two IR 2CDs, we find candidate objects for AGB stars. By using the color selection method, we identify 3996 new objects in the O-rich areas, 1487 new objects in the C-rich areas, and 295 new objects in the overlap areas of the two 2CDs simultaneously. We have found that 470 O-rich and 9 C-rich objects are Mira variables with positive spectral identification and they are newly identified AGB stars. We present a new catalog of 3828 O-rich AGB stars and 1168 C-rich AGB stars excluding misclassified objects and adding newly identified objects.
We present the results of simultaneous monitoring observations of H2O 61,6–52,3 (22GHz) and SiO J=1–0, 2–1, 3–2 maser lines (43, 86, 129GHz) toward five post-AGB (candidate) stars, using the 21-m single-dish telescopes of the Korean VLBI Network. Depending on the target objects, 7 – 11 epochs of data were obtained. We detected both H2O and SiO maser lines from four sources: OH16.1−0.3, OH38.10−0.13, OH65.5+1.3, and IRAS 19312+1950. We could not detect H2O maser emission toward OH13.1+5.1 between the late OH/IR and post-AGB stage. The detected H2O masers show typical double- peaked line profiles. The SiO masers from four sources, except IRAS 19312+1950, show the peaks around the stellar velocity as a single peak, whereas the SiO masers from IRAS 19312+1950 occur above the red peak of the H2O maser. We analyzed the properties of detected maser lines, and investigated their evolutionary state through comparison with the full widths at zero power. The distribution of observed target sources was also investigated in the IRAS two-color diagram in relation with the evolutionary stage of post-AGB stars. From our analyses, the evolutionary sequence of observed sources is suggested as OH65.5+1.3! OH13.1+5.1! OH16.1−0.3! OH38.10−0.13, except for IRAS 19312+1950. In addition, OH13.1+5.1 from which the H2O maser has not been detected is suggested to be on the gateway toward the post-AGB stage. With respect to the enigmatic object, IRAS 19312+1950, we could not clearly figure out its nature. To properly explain the unusual phenomena of SiO and H2O masers, it is essential to establish the relative locations and spatial distributions of two masers using VLBI technique. We also include the 1.2 – 160 μm spectral energy distribution using photometric data from the following surveys: 2MASS, WISE, MSX, IRAS, and AKARI (IRC and FIS). In addition, from the IRAS LRS spectra, we found that the depth of silicate absorption features shows significant variations depending on the evolutionary sequence, associated with the termination of AGB phase mass-loss.
We investigate optical properties of amorphous alumina (Al2O3) dust grains in the envelopes around O-rich asymptotic giant branch (AGB) stars using laboratory measured optical data. We derive the optical constants of amorphous alumina over a wide wavelength range that satisfy the Kramers- Kronig relation and reproduce the laboratory data. Using the amorphous alumina and silicate dust, we compare the radiative transfer model results with the observed spectral energy distributions. Comparing the theoretical models with observations on various IR two-color diagrams for a large sample of O-rich AGB stars, we find that the amorphous alumina dust (about 10-40%) mixed with amorphous silicate better models the observed points for the O-rich AGB stars with thin dust envelopes.
The main site of dust formation is believed to be the cool envelopes around AGB stars. Nearly all AGB stars can be identified as long-period variables (LPVs) with large amplitude pulsation. Shock waves produce by the strong pulsation and radiation pressure on newly formed dust grains drive dusty stellar winds with high mass-loss rates. IR observations of AGB stars identify various dust species in different physical conditions. Radio observations of gas phase materials are helpful to understand the overall properties of the stellar winds. In this paper, we review (i) classification of AGB stars; (ii) IR two-color diagrams of AGB stars; (iii) pulsation of AGB stars; (iv) dust around AGB stars including dusty stellar winds; (v) dust envelopes around AGB stars; (vi) mass-loss and evolution of AGB stars; and (vii) contribution of AGB dust to galactic environments. We discuss various observational evidences and their theoretical interpretations.
We investigate the properties of OH, SiO, and H2O maser emission in O-rich AGB stars. We use a sample of 3373 objects, which is an updated version of the list of O-rich AGB stars presented in Suh & Kwon (2011). We divide the 3373 O-rich AGB stars into four different groups based on the maser emission: OH maser sources (1533), SiO sources (1627), H2O sources (452), and sources with no maser (610). To understand the nature of the maser sources, we present various infrared two-color diagrams (2CDs) using IRAS, 2MASS, and AKARI data. For each group, we compare the positions on various infrared 2CDs with theoretical models. We ¯nd that the OH maser sources generally show larger color indices and larger dust optical depths than SiO or H2O sources. We suggest that the differences of the color indices for different maser sources are due to different mass-loss rates and dust formation processes.
We make a new catalog of AGB stars in our Galaxy from the sources listed in the Infrared Astronomical Satellite (IRAS) point source catalog (PSC) compiling the lists of previous works with verifying processes. We verify the class identification of AGB stars into oxygen-rich and carbon-rich stars using the information from recent investigations. For the large sample of AGB stars, we present infrared two-color diagrams from the observations at near infrared bands and IRAS PSC. On the two-color diagrams, we plot the tracks of theoretical radiative transfer model results with increasing dust shell optical depths. Comparing the observations with the theoretical tracks, we discuss the meaning of the infrared two-color diagrams.
We investigate the spectral energy distributions (SEDs) of low mass-loss rate O-rich asymptotic giant branch (AGB) stars using the infrared observational data including the Infrared Space Observatory (ISO) data. Comparing the results of detailed radiative transfer model calculations with observations, we find that the dust formation temperature is much lower than 1000 K for standard dust shell models. We find that the superwind model with a density-enhanced region can be a possible alternative dust shell model for LMOA stars.
The main sources of interstellar dust are believed to be dust envelopes around AGB stars. The outflowing envelopes around the long period pulsating variables are very suitable place for massive dust formation. Oxygen-rich silicate dust grains or carbon-rich dust grains form in the envelopes around AGB stars depending on the chemical composition of the stellar surface. The dust grains expelled from AGB stars get mixed up and go through some physical and chemical changes in interstellar medium. There are similarities and differences between interstellar dust and dust grains in AGB stars. The mass cycle in the Galaxy may be best manifested by the fact that the dust grains at various regions have many similarities and understandable differences.