검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2016.04 구독 인증기관·개인회원 무료
        One of the overlooked points in mosquito blood feeding research is a final step before blood feeding. We provide the anatomical and chemosensory evidence that a piercing structure of the mouthpart of the mosquitoes is an essential apparatus for the penultimate stage in blood feeding in mosquitoes. Indeed, the stylet possesses a number of sensory hairs located at the tip of the stylet. These hairs house olfactory receptor neurons that express two conventional olfactory receptors of Aedes aegypti (AaOrs), AaOr8 and AaOr49, together with the odorant co-receptor (AaOrco). In vivo calcium imaging using transfected cell lines demonstrated that AaOr8 and AaOr49 were activated by volatile compounds present in blood. Taken together, we identified olfactory receptor neurons in the stylet involved in mosquito blood feeding behaviors, which in turn indicates that olfactory perception in the stylet is necessary and sufficient for mosquitoes to find host blood in order to rapidly acquire blood meals from a host animal.
        2.
        2012.05 구독 인증기관·개인회원 무료
        Three rice planthoppers, the brown planthopper (Nilaparvata lugens), the white back planthopper (Sogatella furcifera), and the small brown planthopper (Laodelphax striatellus) and the green rice leafhopper (Nephotettix cincticeps) are major homopteran sap-sucking rice pests in Korea. These insect pests commonly have highly modified mouthparts, the stylet bundle, for piercing and sucking. Two pairs of mandibular and maxillary stylets consist of the stylet bundle by interlocking each stylet, which forms the two canals, larger one for food canal and smaller one for salivary canal. Destructive damages result from direct feeding effects (hopperburing) with heavy infestation and/or transmitting virus diseases (Rice stripe virus and Rice black-streaked dwarf virus by L. striatellus and Rice dwarf virus by N. cincticeps). Damage level is closely related to the feeding behavior of sap-sucking insects, so generally honeydew excretion amount on the resistant rice variety is smaller than that on the susceptible. Therefore, the method to measure the honeydew excretion amount has been primarily used as an indirect way to compare the feeding amount between the susceptible and the resistant. On the other hand, the electrical penetration graph (EPG) technique was firstly developed by McLean and Kinsey (1964) to measure voltage changes during piercing and sucking of insect on the plant. Since specific voltage waveforms were identified and it was known that each waveform is commonly related to salivary and feeding behavior of insect stylets in the plant tissue, EPG technique has been used to real-timely and quantitatively measure feeding behavior of piercing and sucking insects on susceptible and resistant rice variety. However, identifying each different waveform distinctly and understanding biological function of each waveform are certainly necessary to analyze feeding behavior in the plant tissue such as phloem sap ingestion. In this study, the stylet penetration behavior of N. lugens, S. furcifera, L. striatellus, and N. cincticeps on rice plants (Oryza sativa) was evaluated through the use of a direct current based electrical penetration graph (DC-EPG). To accomplish this, we classified the EPG waveforms of planthopper group into seven different patterns, np, N1, N2, N3, N4-a, N4-b, and N5, according to their shapes, voltage amplitudes, voltage levels, and frequencies. The N4-b pattern was always preceded by N3 and N4-a, in that order. Continuous honeydew excretion only occurred during the N4-b period, and the honeydew deposited on a filter paper containing ninhydrin reagent during the N4-b period were stained into violet. Based on the location of the stylets in the cross-section of rice tissue and honeydew excretion, the EPG waveforms for the stylet penetration behaviors of the three rice planthoppers were assigned to the following groups; np: non-penetration of stylets, N1: penetration initiation, N2: salivation and stylet movement, N3: an extracellular activity near the phloem region, N4-a: an intracellular activity in phloem region, N4-b: phloem sap ingestion, and N5: activity in the xylem region. Futhermore, we classified the EPG waveforms of the green rice leafhopper, N. cincticeps into seven different patterns, Nc1, Nc2, Nc3, Nc4, Nc5, Nc6, and Nc7 according to their shapes, voltage amplitudes, voltage levels, and frequencies. The Nc6 pattern was always preceded by Nc5 pattern. The Nc6 pattern of the leafhopper was carefully considered as a phloem sap feeding behavior based on regular honeydew excretion. On the other hand, the planthopper group and the leafhopper hardly showed the phloem sap feeding pattern on resistant rice varieties during an EPG-recording. In addition, the duration of the phloem sap feeding patterns was highly decreased on resistant rice varieties relative to susceptible ones. From these results, it is suggested that the phloem sap feeding related patterns are an important parameter to determine resistance of rice plant.
        3.
        1993.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        벼멸구의 식이행동을 전기적인 측정 방법을 통하여 관찰하였으며 이들을 각각의 특성에 따라 분류하였고, 그결과 type P, S, SB, O, X, Ph 등 6가지로 나누어 볼 수 있었다. Type P는 벼멸구가 식물에체 처음 접근하여 기주를 탐색할 때 볼 수 있었으며, 구침을 조직내에 찔어 넣거나조직내에서 이동할 때에는 type S를 관찰 할 수 있었다. 또한 매우 규칙적인 S패턴은 체관부에 구침을 찔어 넣을때만 볼 수 있어 type SB로 따로이 분류하였다. X와 Ph패턴은 각각 물관부와 채관부에서 흡즙할 때 나타나는 것을 확인하였으며, type O는 기타 다른 조직내에 구침이 있을 때 이러한 전기적 패턴을 보여 주었다. 이러한 각각의 전기적 패턴을 확인하기 위하여 원하는 패턴이 나타날 때에 식흔이 있는 벼의 조직을 잘라서 현미경으로 관찰하였으며, 각각의 타입별로 벼멸구 배설물을 측정하였다.
        4,000원