PURPOSES: This study deals with the traffic accidents classified by the traffic analysis zone. The purpose is to develop the accident density models by using zonal traffic and socioeconomic data.
METHODS : The traffic accident density models are developed through multiple linear regression analysis. In this study, three multiple linear models were developed. The dependent variable was traffic accident density, which is a measure of the relative distribution of traffic accidents. The independent variables were various traffic and socioeconomic variables.
CONCLUSIONS : Three traffic accident density models were developed, and all models were statistically significant. Road length, trip production volume, intersections, van ratio, and number of vehicles per person in the transportation-based model were analyzed to be positive to the accident. Residential and commercial area ratio and transportation vulnerability ratio obtained using the socioeconomic-based model were found to affect the accident. The major arterial road ratio, trip production volume, intersection, van ratio, commercial ratio, and number of companies in the integrated model were also found to be related to the accident.
통행발생은 4단계 모형의 처음 단계로 전체수요예측에 상당한 영향을 미치게 되므로 정확성이 무엇보다 필요한 단계라 할 수 있다. 현재 통행발생모형으로 도시교통 및 SOC시설 등의 계획에 널리 사용되고 있는 것은 선형회귀모형이며, 각종 사회경제지표와 통행발생량의 관계가 선형임을 전제로 한다. 하지만 급격한 도시개발이나 도시계획구조가 변경되었을 때 통행량을 추정하기 위한 사회경제지표 자료가 부족하여 추정된 통행량의 오차가 많을 수 있다. 이에 본 연구는 일반적으로 널리 사용되는 사회경제지표를 선형이란 가정을 하지 않고, 다양한 존의 특성을 반영할 수 있는 변수에 대한 시장분할을 토대로 새로운 유형별 통행발생모형을 개발하고자 한다. 본 연구에서는 교통수요예측의 처음 단계인 통행발생 모형의 예측력을 개선하기 위하여 존의 다양한 특성(토지이용, 사회경제적 등)을 고려하였다. 예측력 개선을 위한 시장분할 방법론으로는 통행 발생률을 기반으로 한 Data Mining(CART)방법과 회귀분석을 이용하였다. 연구의 결과를 살펴보면, 첫째, CART분석을 활용한 존 특성 분석결과, 유출통행은 사회경제적 요인(남녀상대비중, 연령대(22~29세))에 영향을 받고 있으며, 유입통행은 토지이용 요인(업무시설상대비중), 사회경제적 요인(3차 종사자상대비중)으로 나타났다. 둘째, 유형별 모형개발 결과 통행발생 계수 값은 유출의 경우 0.977~0.987(통행/인)이며, 유입의 경우 0.692~3.256(통행/인)로 나타나 유형구분이 필요한 것으로 나타났다. 셋째, 실측검증을 수행하였으며, 유출 및 유입의 경우 기존 모형보다 적합도가 높아진 것을 알 수 있다. 따라서 본 연구에서 개발한 유형별 통행발생모형이 기존 연구보다 우수한 것을 알 수 있었다.