검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Salivary gland adenocarcinoma(AdCa NOS) is one of the major causes of mortality among malignant salivary gland tumors. New therapeutic measure are needed to improve the outcome for patients with AdCa NOS because current therapy does not significantly improve survival rates. Transglutaminase 2(TGase 2) was implicated in forming cross-linked protein polymer, apoptosis and matrix interaction. And also TGase 2 expression is up-regulated in proliferation, migration, invasion, and metastasis of cancer cells. shRNA which has emerged as an effective method to target specific genes for silencing has provided new opportunities for cancer therapy. But there has been rarely reported using shRNA-TGase 2 transfection in AdCa NOS. The purpose of this study were to examine the specific inhibition of TGase 2 mRNA and protein expression by siRNA transfection of TGase 2 through RT-PCR and immunoslot blotting, and to study proliferation, migration and invasion assay of SGT cell line from AdCa NOS. Cell cycle analysis showed that the downregulation of shRNA-TGase 2 caused the accumulation of cells in the sub-G0/G1 phase. In migration assay, suppressing shRNA-TGase 2 inhibited the capacity of the cells to migrate compared to parental cells. In invasion assay, cells transfected with shRNA-TGase 2 decreased in invasion when compared to SGT and vector transfected cells. shRNA-TGase 2 expressing plasmids efficiently downregulated TGase 2 mRNA and TGase 2 protein expression. It suggested that the shRNA-TGase 2 targeting system against TGase 2 could have a therapeutic potentiality for malignant salivary gland tumors, especially in inhibiting and/or preventing cancer cell proliferation, migration and invasion.
        4,000원
        2.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The carcinogenesis mechanism of human salivary gland adenocarcinoma NOS is poorly understood. MicroRNA155(miRNA155) has been involved in the carcinogenesis of many malignant tumors. The purpose of this study was to examine the role of miRNA155 in tumor growth and invasion of adenocarcinoma NOS. Using SGT cells as a model for adenocarcinoma NOS, cell proliferation was examined by MTT assay after knocking down miRNA155 expression, and cell cycle analysis was performed. Invasive capacity by a Transwell culture assay, and miRNA155 expression in SGT cell line by RT-PCR were examined. In MTT assay, proliferation of SGT-miRNA155 cells was decreased prominently after 96 hrs. Proliferation of SGT cells was markedly inhibited by knocking down miRNA155, resulting from a blockade of cell cycle in the G1 phase, but apoptosis was increased about 4 folds. In adhesion assay, SGT-miRNA155 cells decreased about 60% compared to SGT cells. In invasion assay, inhibition of miRNA155 significantly suppressed the invasive capacity of about 34% SGT cells. mRNA expression of SGT-miRNA155 cells prominently were decreased compared to SGT cells by RT-PCR. It suggested that miRNA155 could play an role in cell cycle progression and invasion in SGT cells, including antitumor effect. These results have provided insights into the carcinogenic mechanisms and new intervention method of salivary gland adenocarcinoma NOS.
        4,000원