An efficient vehicle routing heuristic for different vehicle moving times for forward and backward between two points is studied in this research. Symmetric distance or moving times are assumed to move back and forth between two points in general, but it is not true in reality. Also, various moving speeds along time zones are considered such as the moving time differences between rush hours or not busy daytimes. To solve this type of extremely complicated combinatorial optimization problems, delivery zones are specified and delivery orders are determined for promising results on the first stage. Then delivery orders in each zone are determined to be connected with other zones for a tentative complete delivery route. Improvement steps are followed to get an effective delivery route for unsymmetric-time-varing vehicle moving speed problems. Performance evaluations are done to show the effectiveness of the suggested heuristic using computer programs specially designed and developed using C++.
본 연구에서는 판 구조물의 최적위상을 찾기 위한 비대칭 층을 가지는 인공재료모델을 이용한 위상최적화기법을 제시하였다. 구절점 판요소를 형성하기 위하여 판의 일차전단변형을 고려하는 Reissner-Mindlin 판이론이 도입되었다. 최소화하고자 하는 변형에너지를 목적함수로 하고 구조물의 초기부피를 제약함수로 채택하였다 인공재료모델에 존재하는 다공성물질의 구멍의 크기를 조절하기 위하여 최적정기준법을 바탕으로 하는 크기조절알고리듬을 도입하였다. 제시된 위상최적화 기법의 성능을 조사하기 위하여 수치예제를 수행하였다. 수치해석결과로부터 제시된 위상최적화기법은 판구조물의 최적위상을 도출하는데 매우 효과적인 것으로 나타났다. 특히 제시된 비대칭 층모델은 판구조물의 보강재를 보다 실제적으로 도출하는데 유용할 것으로 나타났다.
비대칭 박벽단면을 갖는 곡선보의 자유진동해석을 수행할 수 있는 유한요소 이론 및 엄밀해를 제시하기 위하여 가상일의 원리를 이용한 3차원 연속체의 운동방정식을 제시한다 박벽단면의 구속된 비틂효과를 고려하는 박벽 곡선보의 변위장을 도입하고 이를 연소체의 운동방정식에 대입하여 단면에 대해 적분함으로써 박벽 곡선보의 운동방정식을 유도한다. 단순지지되고 일축대칭단면을 갖는 박벽 곡선보의 면내 자유진동 모드에 대응하는엄밀해를 산정하였으며 곡선보를 유한요소로 분할하여 요소의 변위장을 요소 변위벡터에 관한 3차의 Hermitian 다항식으로 나타내고 이를 운동방정식에 대입함으로써 탄성강도행렬과 질량 행렬을 유도한다 또한 본 연구에서 얻어진 엄밀해와 곡선보요소를 이용한 유한요소 해석결과를 직선보요소 및 ABAQUS의 쉘요소를 이용하여 얻어진 결과와 비교 검토를 함으로써 본 연구의 타당성을 입증한다.
전단변형 효과를 무시하는 경우에 비대칭 선형 변단면을 갖는 박벽 공간 보의 안정성 해석을 위한 일반이론을 유도한다. 비대칭 선형 변단면의 임의점을 통과하는 부재축과 단면의 주축의 방향과 무관하고 부재축과 직각을 이루는 두 개의 좌표축을 도입하여 직각좌표계를 정의한다. 정의된 좌표축을 기준으로 유한한 회전각의 2차항을 고려하는 변위장을 도입하여 연속체에 대한 가상일의 원리로부터 탄성변형에너지, 그리고 초기응력에 의한 포텐셜에너지를 유도한다. 이를 이용하여 비대칭 선형 변단면을 갖는 박벽 공간 보의 안정성해석을 위한 평형방정식을 제시한다. 3차 Hermitian 다항식을 변위파라미터의 형상함수로 사용하여 박벽 공간 보의 탄성강도 및 기하강도행렬을 상정할 뿐만 아니라, 단면의 좌표축에 상관없이 임의의 위치에 작용하는 하중에 대한 하중보정강도행렬(load-correction stiffness matrix)을 제시한다. 본 이론 및 방법의 타당성을 검증하기 위하여 수치해석을 수행하고 문헌의 결과 및 쉘요소를 사용한 해석결과와 비교하여 본 이론의 정당성을 입증한다.
실제로 구조시스템들의 최적설계는 설계변수가 연속값이 아닌 이산값을 요하는 경우가 대부분이다. 본 논문은 이산형 설계변수를 갖는 비대칭 복합 적층평판에 대해 선형 근사화방법을 이용한 이산최적설계를 수행하였으며, 이 방법이 매우 효율적임을 보였다. 대상 문제는 축력, 전단력, 그리고 휨과 비틀림 모멘트의 평면 내하중들(in-plane loads)의 다중하중조건을 받는 것으로 고려하였으며, 복합 적층평판을 구성하는 플라이들에 대한 최대변형률 규준을 설계 제약조건으로 부과하였다. 이산 최적화를 위한 초기 접근방법으로 단 한번의 연속변수 최적화 과정이 FDM(Feasible Direction Method)을 이용하여 수행되었으며, 차후 이산 및 연속변수를 포함하는 비선형 이산최적화문제를 SLDP(Sequential Linear Discrete Programming)방법에 의해 선형 근사화된 혼합정수계획문제로 형성하여 풀었다. 수치예에서 6개의 플라이로 구성된 비대칭 복합 적층평판을 대상으로 회전식 적층배열([(90-.theta.)/-(60+.theta.)/-.theta./-(45+.theta.)/(45-.theta.)]s)에 따른 이산최적해를 구하였다. 효율성 입증을 위해 똑같은 문제를 비선형 분기한계법을 이용하여 풀었으며, 그 결과를 비교 분석하였다.