PURPOSES : This study is to compare sound transmission loss(STL) value depending on the four kinds of materials, PC(Polycarbonate), PMMA(Polymethyl mathacrylate), PE(Polyethlyene), PP(Polypropylene), and two types of structure, single layer and double with vacuum layer, of soundproof panel.
METHODS : With four sorts of polymer material, the specimens were made as various structures, 4 mm and 8 mm of single soundpoof panel and vacuum layered 4 mm of one. The experimental condition and procedures were complied with authorized process test, KS F 2808.
RESULTS: STL of single panel made of PC were the greatest followed by PMMA, PE, PP regardless of the thickness of panel, However, STL of PMMA panel began to decrease around 2500 Hz and reached the lowest value among others in 5000 Hz. Vacuum layer soundproof panel showed good performance in more than 2000 Hz. Only vacuum layer panel made of PC presented resonance frequency at 800 Hz while that of other vacuum ones at 1000 Hz.
CONCLUSIONS: According to results of single layer, it was found that single panel functioned as the theorical way we expected in terms of surface density. That trends were blurred as the panel got thicker. And it was suggested also that vacuum layer panel performed well at high frequency, more than 2000 Hz.
W-ZrC and W-HfC composite powders were fabricated by the Plasma Alloying & Spheroidization (PAS) method and the powders were sprayed into hybrid coating layers by using Low Vacuum Plasma Spray (LVPS) process, respectively. Microstructure, mechanical properties, and ablation characteristics of the fabricated coating layers were investigated. The LVPS process led to successful production of W-Carbide hybrid coatings, approximately 400 or above in thickness. As the substrate preheating temperature increased from to , the hardness of the W-ZrC coating layer increased due to decreased porosity. Vickers hardness showed higher value (about 108.4 HV) in W-ZrC hybrid coating material compared to that of W-HfC while adhesive strength was found to be similar in both coating layers. The plasma torch test revealed good ablation resistance of the W-Carbide hybrid coating layers. The relatively high performance W-ZrC coating layer at the elevated temperature is thought to be attributed to both the strengthening effect of ZrC particle remained in the layer and the formation of ZrO2 phase with high temperature stability.