Current portable reference equipment used to evaluate the performance of vehicle detectors can collect traffic volume and speed only for the outermost lanes in each direction. Passing vehicles on the other lanes are manually counted by reviewing the recorded videos. Consequently, only traffic volume—without vehicle speed—is used as a reference value. This method is time-consuming for comparing the performance data from the equipment with the reference data and can compromise the performance evaluation. This study aims to enhance the efficiency of vehicle detection system (VDS) performance evaluations by developing multilane portable reference equipment that can accurately collect traffic information for lanes beyond the outermost lane or for more than two lanes. This study introduced the core technologies of multilane portable reference equipment and compared and analyzed the measurement accuracy of the developed equipment against data from fixed reference equipment operated by the Intelligent Transportation System (ITS) Certification and Performance Evaluation Center, following ITS performance evaluation criteria. The data from the fixed reference equipment were considered the true values, providing a basis for evaluating the accuracy of the measurements by the developed equipment. First, the accuracy of the vehicle length was determined by driving four test vehicles, each measuring 7,085 mm in length, 24–29 times in each lane. The accuracy was calculated by comparing the vehicle length data obtained from the fixed reference equipment with the actual vehicle length. A confidence interval was established for this accuracy. To assess the accuracy of the speed and occupancy time in relation to the accuracy of the analyzed vehicle length, we evaluated the error range of the vehicle length according to variations in speed and occupancy time. This analysis was based on the following relationship equation: “vehicle length = speed × occupied time – sensor spacing.” The analysis used data from approximately 16,000 vehicles, including the speed, occupancy time, and vehicle length, collected between 8:00 am and 12:00 pm on August 8, 2024. The principle behind measuring traffic volume and vehicle speed using multilane portable reference equipment involves detecting a vehicle by analyzing the time difference between the driver and passenger tires. The vehicle speed was calculated using the installation angle of the tire detection sensor and trigonometric functions. An analysis of the measurement accuracy revealed that the traffic volume accuracy of the outermost lane (the fourth lane) was 100% during both day and night. The speed accuracy was 98.8% during the day and 97.7% at night, representing the highest performance in these metrics. Additionally, the traffic volume accuracy for the innermost lane (the first lane), as measured by the detection sensor from the third lane, was more than 99.3% at all times, with a speed accuracy exceeding 96% during the day and night, that also demonstrated excellent results. The analysis results indicated that the multilane portable reference equipment developed in this study was suitable for evaluating the VDS performance. This equipment allowed the collection of traffic volume and speed data from all lanes, rather than only the outermost lanes. This capability enabled consistent analysis for each lane and enhanced efficiency by reducing the analysis time. Additionally, this is expected to improve the reliability of the performance evaluations.
본 연구에서는 차량검지기의 속도측정 성능평가방법을 개발하였다. 개발된 성능평가방법에서는 오차요인들을 기준속도에 반영하며 측정불확도의 개념을 적용하였다. 기존연구, 통계적 처리기법, 기존교통단속장비 및 차량검지시스템의 속도측정 성능평가방법 등에 대한 고찰을 통해 기존평가방법의 문제점을 도출하고 개선된 성능평가방법을 개발하였다, 실제 현장에 설치된 차량검지기에 대해서 기존평가방법과 개발방법을 적용해본 결과 기존평가방법은 평가기준에 적합하나 개발방법은 평가기준을 만족시키지 못하고 있다. 이러한 결과는 기존성능평가방법이 측정 시의 오차요인들을 충분히 고려하지 못해서 평가대상장비의 성능을 고평가할 가능성이 있음을 의미하며, 반면에 개발모형은 측정 시의 변동요인인 오차를 고려하므로 기존평가방법 보다 정확함을 나타낸다.
센싱 기술의 발달로 다양한 종류의 매체를 이용한 우수한 차량 검지장비들이 개발되고 있는 요즘, 간단한 구조의 저가형 검지장비 또한 적은 예산으로 여러 곳에 설치할 수 있다는 장점 때문에 지속적인 연구가 이루어지고 있다. 본 연구에서는 저가형 차량 검지장비로서 센서를 사선으로 설치하여 좌우 및 전후 바퀴의 통과시간 간격과 차량의 윤거값을 적용하여 차량속도를 추정하는 방법을 제안하였다. 출고된 차량의 제원조사에서 얻어진 대표 윤거값을 축거와 뒤윤거의 비율에 따라 소형과 대형 차량으로 구분하여 적용하므로 기존의 연구보다 정확한 속도추정이 가능하도록 개선하였다. 특히, 소형과 대형차량을 구분하는 파라미터를 통하여 조사지점의 차종구성 비율을 고려한 정확도 보정이 가능하다. 간단하고 저가로 개발된 본 연구의 사선형 센서를 이용한 검지장비는 적은 비용으로 교통상황을 설명하는데 효율적으로 활용될 것으로 기대된다.