검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Nitrogen oxides (NOx) are the main precursors to generate fine particulate matter, which significantly contribute to air pollution. NOx gases are transmitted into the atmosphere in large quantities, especially in areas with a high volume of traffic. Titanium dioxide (TiO2), which is a photocatalytic reaction material, is very efficient for removing NOx. The application of TiO2 to concrete road structures is a good alternative to remove NOx. Generally, TiO2 concrete is produced by mixing concrete with TiO2 . However, a significant amount of TiO2 in concrete cannot be exposed to air pollutants or UV. Therefore, an alternative method of penetrating TiO2 into horizontal concrete structures using a surface penetration agent was proposed in a previous study. This method may not only be economical but also applicable to various types of horizontal concrete structures. However, the TiO2 penetration method may not be applied to vertical structures because it has a mechanism for the penetration of TiO2-containing penetration agents via gravity and capillary forces. Therefore, this study aimed to evaluate the applicability of the pressurized TiO2 fixation method for existing vertical road structures. METHODS : For the application of vertical concrete structures — such as retaining walls, side ditches, and barriers — the applicability of a static and dynamic pressurized TiO2 fixation method was evaluated according to the experimental conditions, considering the amount of pressure and time. The penetration depth and distribution of TiO2 particles in the concrete specimen were measured using SEM/EDAX. In addition, the NOx removal efficiencies of TiO2 concrete were evaluated using the NOx analysis system. RESULTS : As a result of measuring the penetration depth and distribution of TiO2 in the concrete, it was found that the surface-predicted mass ratio increased with increasing pressure and time. In the case of the static pressurized fixation method, it was confirmed that a pressure time of at least 10 s at a pressure of 0.2 MPa and 5 s at a pressure higher than 0.3 MPa were required to achieve a NOx removal efficiency higher than 40 %. Conversely, for the dynamic pressurized fixation method applying a hitting energy of 16.95 J, NOx removal efficiencies higher than 50 % were secured in a pressure time of more than 3 s. CONCLUSIONS : The results of this study showed that the static and dynamic pressurized TiO2 fixation method was advantageous in penetrating and distributing TiO2 particles into the concrete surface to effectively remove NOx. It was confirmed that the proposed method to remove NOx was sufficiently applicable to existing vertical concrete road structures.
        4,200원
        2.
        1994.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        프리캐스트 콘크리트(P.C) 대형판 구조물은 일체식 현장타설 철근콘크리트 구조물에 비하여 보통 접합부에서 약한 강성을 가지고 있다. 그러나 일반적으로 실무에서 이러한 P.C대형판 구조물의 특성이 고려되지 않고 있으며 일체식 구조물에서와 동일한 해석모델을 사용하고 있는 실정이다. 따라서 이러한 모델을 사용하요 얻은 해석결과는 실제 P.C구조물에서의 발생하는 것들과 매우 상이할 수 있다. 본 연구에서는 이P.C구조물의 해석에 적합한 몇가지 유한요소모델을 시도해 봄으로써 수직접합부에 실제의 낮은 전단강성을 적용함으로 인해 발생하는 구조물에서의 힘과 응력분포 및 처짐의 변화를 관찰하여 보았다. 마지막으로 실부자들을 위해 수직접합부 전단강성의 영향을 감안한 단순화된 모델이 오차범위에 대한 이해를 전제로 하여 제안되고 있다.
        4,000원