검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2019.03 KCI 등재 서비스 종료(열람 제한)
        Recently, smart factories have attracted much attention as a result of the 4th Industrial Revolution. Existing factory automation technologies are generally designed for simple repetition without using vision sensors. Even small object assemblies are still dependent on manual work. To satisfy the needs for replacing the existing system with new technology such as bin picking and visual servoing, precision and real-time application should be core. Therefore in our work we focused on the core elements by using deep learning algorithm to detect and classify the target object for real-time and analyzing the object features. We chose YOLO CNN which is capable of real-time working and combining the two tasks as mentioned above though there are lots of good deep learning algorithms such as Mask R-CNN and Fast R-CNN. Then through the line and inside features extracted from target object, we can obtain final outline and estimate object posture.
        2.
        2007.06 KCI 등재 서비스 종료(열람 제한)
        This paper introduces a position-based robust visual servoing method which is developed for operation of a human-like robot with two arms. The proposed visual servoing method utilizes SIFT algorithm for object detection and CAMSHIFT algorithm for object tracking. While the conventional CAMSHIFT has been used mainly for object tracking in a 2D image plane, we extend its usage for object tracking in 3D space, by combining the results of CAMSHIFT for two image plane of a stereo camera. This approach shows a robust and dependable result. Once the robot's task is defined based on the extracted 3D information, the robot is commanded to carry out the task. We conduct several position-based visual servoing tasks and compare performances under different conditions. The results show that the proposed visual tracking algorithm is simple but very effective for position-based visual servoing.
        3.
        2006.12 KCI 등재 서비스 종료(열람 제한)
        The problem of establishing the servo system to reach the desired location keeping all features in the field of view and following a straight line is considered. In addition, robustness of camera calibration parameters is considered in this paper. The proposed approach is based on switching from position-based visual servoing (PBVS) to image-based visual servoing (IBVS) and allows the camera path to follow a straight line. To achieve the objective, a pose estimation method is required; the camera's target pose is estimated from the obtained images without the knowledge of the object. A switched control law moves the camera equipped to a robot end-effector near the desired location following a straight line in Cartesian space and then positions it to the desired pose with robustness to camera calibration error. Finally simulation results show the feasibility of the proposed visual servoing technique.