검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2008.03 KCI 등재 서비스 종료(열람 제한)
        Abstract Many researchers are studying on humanoid robots in all over the world. However the humanoid robots are still limited in doing works like picking up objects on the ground or moving rapidly. In this study, a humanoid robot based on the wheel-driving was developed. It can operate with a human working area keeping the stability. Also, the developed robot can take up the object on the floor since it has knee(1DoF) and waist(3DoF), and do service quickly and steadily. The hardware and software structure and algorithms of the developed robot, SEROPI are introduced in this paper.
        2.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        The docking and recharging system for a mobile robot must guarantee the ability of the mobile robot to perform its tasks continuously without human intervention. In this paper, two docking mechanisms are proposed with localization error-compensation capability for the auto recharging system. Friction forces or magnetic forces are used between the docking parts of the docking module and those of the docking station. In addition, an auto recharging system is developed to control the power. Since the system is modularized, it can easily be adapted to other robots.
        3.
        2007.06 KCI 등재 서비스 종료(열람 제한)
        This paper introduces a position-based robust visual servoing method which is developed for operation of a human-like robot with two arms. The proposed visual servoing method utilizes SIFT algorithm for object detection and CAMSHIFT algorithm for object tracking. While the conventional CAMSHIFT has been used mainly for object tracking in a 2D image plane, we extend its usage for object tracking in 3D space, by combining the results of CAMSHIFT for two image plane of a stereo camera. This approach shows a robust and dependable result. Once the robot's task is defined based on the extracted 3D information, the robot is commanded to carry out the task. We conduct several position-based visual servoing tasks and compare performances under different conditions. The results show that the proposed visual tracking algorithm is simple but very effective for position-based visual servoing.