작물 증발산량은 잠재 증발산량에서 작물계수를 곱하여 작 물의 요수량을 산출할 수 있어 수자원 관리에 널리 사용되는 방법이다. 특히 유엔식량농업기구(FAO)가 관개 및 배수 논 문 NO.56에서 발표한 Penman-Monteith 방정식(FAO 56-PM) 은 잠재 증발산량을 추정하는 표준방법으로, 평균온도, 최대 온도, 최소온도, 상대습도, 풍속 및 일사량의 6가지 기상 데이 터가 필요하다. 그러나 농경지 인근에 설치된 기상센서는 설 치 및 유지보수 비용이 높아 결측, 이상치와 같은 데이터 신뢰 성 문제를 야기하여 정확한 증발산량 계산을 복잡하게 만든 다. 본 연구에서는 인근 기상청의 데이터를 사용하여 필요한 6가지 기상 변수를 예측함으로써 기상 센서 없이 작물 증발산량을 추정할 수 있는지 조사하였다. 우리는 기상청의 API를 통해 수집할 수 있는 22개의 기상 변수를 입력 데이터로 활용 했다. 9개의 회귀 모델을 학습한 후 성능에 따라 상위 3개를 선 택하고 하이퍼파라미터 튜닝을 적용하여 최적의 모델을 식별 했다. 가장 좋은 성능을 보인 모델은 Extreme Gradient Boosting Regression(XGBR)이었으며 평균온도, 최대온도, 최소온도, 상대습도, 풍속 및 일사량에서 결정계수(R2)가 각 0.98, 0.99, 0.99, 0.91, 0.72, 0.86로 높은 결과를 얻을 수 있었다. 이러한 결과는 XGBR 모델이 작물 기상 데이터를 사용하여 작물 증 발산 모델에 필요한 입력 값을 정확하게 예측할 수 있어 값비 싼 기상 센서가 필요 없음을 시사한다. 이 접근 방식은 센서 설 치 및 유지보수가 어려운 지역에서 특히 유용할 수 있으며, 직 접적인 센서 데이터 없이도 표준 증발산 모델의 사용을 가능 하게 한다.
본 연구의 목적은 휘발성 유기화합물(VOC)과 먼지(PM)의 배출원 프로파일로부터 화학종 분류를 할당하고, 성김 행렬 조작자 핵심 배출량 시스템(SMOKE) 내에 배출원 분류코드에 따른 배출원 프로파일의 화학종 분류와 시간분배계수를 수정하는 것이다. 기솔린, 디젤 증기, 도장, 세탁, LPG 등과 같은 VOC 배출원 프로파일로부터 화학 종 분류는 탄소 결합 IV (CBIV) 화학 메커니즘과 주 규모 대기오염연구센터 99 (SAPRC99) 화학 메커니즘을 위해 각각 12종과 34종을 포함한다. 또한 토양, 도로먼지, 가솔린, 디젤차, 산업기원, 도시 소각장, 탄 연소 발전소, 생체 연소, 해안 등과 같은 PM2.5 배출원 프로파일로부터 화학종 분류는 미세 먼지, 유기탄소, 원소 탄소, 질산염과 황산염의 5종으로 할당하였다. 게다가 점 및 선 배출원의 시간 프로파일은 2007년 수도권 지역에서의 굴뚝 원격감시시스템(TMS)과 시간별 교통 흐름 자료로부터 구하였다. 특별히 점 배출원에 있어 오존 모델링을 위한 시간분배계수는 굴뚝 원격감시시스템 자료의 NOX 배출량 인벤토리에 근거하여 추정하였다.