검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        건축구조기준(KBC-2016)에서는 팔각기둥 형상을 가진 구조물의 풍력계수는 형상비 25이상에서 1.4로 일정한 값을 적용하도록 하고 있다. 하지만 팔각뿔 형상인 첨탑 구조물은 팔각기둥과는 그 형상이 다르기 때문에 첨탑 구조물에 적용할 풍력계수에 관한 연구가 필요하다. 본 논문에서는 풍동실험을 이용하여 첨탑 구조물의 형상비 변화에 따른 풍력계수 특성을 규명하였다. 일반적으로 구조물에 작용하는 풍력계수는 형상비가 증가할수록 커진다. 하지만 특정 형상비를 초과하면 풍력계수는 더 이상 증가하지 않고 일정하게 수렴한다. 이러한 특성을 반영하기 위해, 예비실험은 형상비가 10~19.2인 모델에 대해 수행하였고, 풍력계수가 수렴하기 시작하는 형상비를 검토하였다. 그 결과 15 이상의 형상비에서 풍력계수가 약 1.1로 수렴하는 것으로 나타났다. 형상비 변화에 따른 풍력계수 변화를 고찰하기 위해 형상비 3~8.5 까지의 모형을 추가 제작하여 풍동실험을 수행하였다. 연구의 결과를 이용하여 형상비 변화에 따른 풍력계수의 변화를 경험식으로 제안하였고, 추세한 값들이 실험값 보다 작지 않도록 보정하였다.
        4,000원
        2.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        현재 전주의 내풍설계는 배전설계기준(DS-4901: 2009)을 사용하여 검토하고 있다. 전주의 풍력계수는 전주의 형상 및 전주에 부착물이 부착된 상태에 따라 다른 값을 갖지만 현재의 배전설계기준에서는 하나의 값만을 제시하고 있다. 그러나 전주에 가해지는 정확한 풍하중을 산정하기 위해서는 전주의 형상과 부착물에 대한 영향을 반영한 풍력계수를 사용하여야 할 것이다. 본 연구에서는 전주의 형상 및 부착물의 상태를 달리한 13종류의 전주모형을 대상으로 풍동실험을 수행하여 풍력계수를 결정하였고, 합리적인 풍하중을 산정하기 위해 필요할 것으로 생각되는 부착물의 상태를 고려한 4종류의 전주형상과 그에 대한 풍력계수를 제시하였다. 직선 전주의 풍력계수는 변압기 1개 이하일 때 1.0, 2개 이상일 때는 1.25로 하였고, 곡선전주의 풍력계수는 변압기 1개 이하일 때 0.85, 변압기 2개 이상일 때 1.1로 제안하였다. 전주형상과 부착물에 따른 풍력계수의 변화특성을 보면 완철의 위치와 개수는 풍력계수에 큰 영향을 미치지 않았고, 변압기가 부착되면 풍력계수가 최대 약 26% 증가하였으며, 곡선전주는 직선전주에 비해 풍력계수가 약 14% 작은 것으로 나타났다.
        4,000원
        3.
        2014.04 구독 인증기관·개인회원 무료
        In this study, a circular tower, a modular tower and a multi-column tower were subjected to wind tunnel test and CFD (Computational Fluid Dynamic) simulation. A modular tower with an octagonal cross-section is designed for easy transportation during construction. A multi-column tower with four secondary columns, which have smaller cross-sectional area relative to the main column, is designed for mitigating wind load. Their mean wind force coefficients were obtained through wind tunnel test and CFD simulation, which were carried out by Daewoo Institute of Construction Technology. Their results are compared to each other to verify the reliability of calculated mean wind force coefficient. Difference between mean wind force coefficient values obtained from wind tunnel test and CFD simulation is shown to be within 10% for a circular tower and a multi-column tower, and slightly above 10% for a modular tower.
        4.
        1994.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Wind load is known to be one of major forces to influence the stability of agricultural structures. General flow fields were calculated to determine flow characteristics over the envelop of the following three types of greenhouses with arched roof : single span, twin span greenhouses, and two single span greenhouses apart 3m inbetween. Pressure coefficients along the envelop of greenhouse were numerically calculated by the k-ε turbulence model, which lead to determine wind forces on it. Curvilinear coordinate for an arched roof and the upwind scheme were adopted for the study. The calculated pressure coefficients were validated with the avaliable data of Japanese Standard and NGAM Standard. The Magnitude of calculated forces over the envelop was not in good accordance with data except the windward wall. Even tile data of Japanese and NGAM Standard for validation deviated a lot from each other in quantity and quality. Such discrepancy may be attributed to different geometric and/or flow configuration conditions for experiments, or the insenstivity of the k-ε turbulence model to recirculation flow.
        4,000원
        5.
        1993.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The wind pressure distributions were analyzed through the wind tunnel experiment to provide fundamental criteria for the structural design on the three-span arched house according to the wind directions. In order to investigate the wind force distribution, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated from the experimental data. The results obtained are as follows : 1. The variation of the wind force with the wind directions on the side walls was the greatest at the upwind edge of the walls. The change of pressure from the positive to the negative on the side walls occurred at the wind direction of 30˚ in the first house and 60˚ in the third house. 2. The maximum negative wind force along the length of the roof appeared at the length ratio of 0-0.2, when the wind directions were 90˚ in the first house, 60˚ in the second house and 30˚ in the third house. 3. The maximum negative wind force along the width of the roof appeared at the width ratio and the wind direction of 0.4 and 0˚ in the first house, 0.4-0.6 and 30˚ in the second house and 0.6 and 30˚ in the third house, respectively. 4. The maximum mean positive and negative wind forces occurred at the wind direction of 60˚ and 30˚, respectively, on the side walls of the first house, and the maximum mean negative wind force on the roof occurred at the wind direction of 30˚ in third house. 5. The maximum drag and lift forces occurred at the wind direction of 30˚, and the maximum lift force appeared in the third house. 6. The parts to be considered for the local wind forces were the edges of the walls, the edges of the x-direction of the roofs, and the locations of the width ratio of 0.4 of the first and third house and the center of the width of the second house for the y-direction of the roofs.
        4,000원
        6.
        1992.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The wind pressure distributions were analyzed to provide fundamental criteria for the structural design on the two-span arched house according to the wind directions through the wind tunnel experiment. In order to investigate the wind force distributions, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated using the experimental data. The results obtained are as follows : 1. The variation of the wind force with wind directions on the side walls was the greatest at the upwind edge of the walls. 2. The maximum negative wind force along the length of the roof appeared at the upwind edge at the wind direction of 60˚. 3. The maximum negative wind force along the width of the roof appeared at the width ratio and wind direction of 0˚ and 0.4 in the first house and 0.6 and 30˚ in the second house, respectively. 4. The mean negative wind force on the side walls of the first house at the wind direction of 0˚ was far greater than that of the second house, and the maximum negative wind force on the roof occurred at the wind direction of 30˚. 5. The maximum lift force appeared on the second house at the wind direction of 30˚, but the lift force on the first house was far greater than that on the second house at the wind direction of 0˚. 6. The parts to be considered for the local wind forces were the edges of the walls, and the edges of the x-direction and the width ratio, 0.4 of the y-direction in the roofs.
        4,000원
        7.
        1992.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The wind pressure distributions were analyzed to provide fundamental criteria for the structural design on e single-span arched house according to the wind directions through the wind tunnel experiment. In order to investigate the wind force distributions, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated by using the experimental data. The results obtained are as follows: 1. When the wind direction was normal to the wall, the maximum positive wind pressure along the height of the wall occurred approximately at two-thirds of the wall height because of the effects of boundary layer flow. 2. When the wind direction was 30˚ to the wall, the maximum positive wind force occurred at the windward edge of the wall. When the wind direction was parallel to the wall, the maximum negative wind force occurred at the windward edge of the wall. 3. The maximum negative wind force along the width of the roof appeared around the width ratio, 0.4, and that along the length of the roof appeared around the length ratio, 0.5. 4. According to the results of the mean wind force coefficients analysis, the maximum negative wind force occurred on the roof at the wind direction of 30˚. 5. The wind forces at the wind direction of 30˚ instead of 0˚ are recommended in the structural design of supports for a house. 6. To prevent partial damage of a house structure by wind forces, the local wind forces should be considered to the structural design of a house.
        4,000원