검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 488

        201.
        2017.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, two Fe-30Mn-0.2C-(1.5Al) high-manganese steels with different surface conditions were hydrogencharged under high temperature and pressure; then, tensile testing was performed at room temperature in air. The yield strength of the 30Mn-0.2C specimen increased with decreasing surface roughness(achieved via polishing), but that of the 30Mn-0.2C- 1.5Al specimen was hardly affected by the surface conditions. On the other hand, the tendency of hydrogen embrittlement of the two high-manganese steels was not sensitive to hydrogen charging or surface conditions from the standpoints of elongation and fracture behavior. Based on the EBSD analysis results, the small decrease in elongation of the charged specimens for the Fe-30Mn-0.2C-(1.5Al) high-manganese steels was attributed to the enhanced dislocation pile-up around grain boundaries, caused by hydrogen
        4,000원
        204.
        2017.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The aim of this study is to consider the effect hydrogen on dezincification behavior of Cu-Zn alloys. The investigations include microstructural observations with scanning electron microscope and chemical composition analysis with energy dispersive spectrometer. The dezincification layer was found to occur in high pressure hydrogen atmosphere, not in air atmosphere. In addition, the layers penetrated into the inner side along the grain boundaries in the case of hydrogen condition. The shape of the dezincification layers was porous because of Zn dissolution from the α or β phase. In the case of stress corrosion cracks formed in the Cu-Zn microstructure, the dezincification phenomenon with porous voids was also accompanied by grain boundary cracking.
        4,000원
        205.
        2017.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Isosteric heat of hydrogen adsorption is one of the most important parameters required to describe solid-state hydrogen storage systems. Typically, it is calculated from adsorption isotherms measured at 77K (liquid N2) and 87K (liquid Ar). This simple calculation, however, results in a high degree of uncertainty due to the small temperature range. Therefore, the original Sievert type setup is upgraded using a heating and cooling device to regulate the wide sample temperature. This upgraded setup allows a wide temperature range for isotherms (77K ~ 117K) providing a minimized uncertainty (error) of measurement for adsorption enthalpy calculation and yielding reliable results. To this end, we measure the isosteric heats of hydrogen adsorption of two prototypical samples: activated carbon and metal-organic frameworks (e.g. MIL-53), and compared the small temperature range (77~87K) to the wide one (77K ~ 117K).
        4,000원
        206.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Understanding effects of thermal pollution and acidification has long been a concern of aquatic ecologists, but it remains largely unknown in Korea. This study was performed to elucidate the effects of thermal wastewater effluent (TWE) and acid rain on water quality and attached algae in a small mountain stream, the Buso Stream, a tributary located in the Hantan River basin. A total of five study sites were selected in the upstream area including the inflowing point of hot-spring wastewater (HSW), one upstream site (BSU), and three sites below thermal effluent merged into the stream (1 m, 10 m and 300 m for BSD1, BSD2, and BSD3, respectively). Field surveys and laboratory analyses were carried out every month from December 2015 to September 2016. Water temperature ranged 1.7~28.8°C with a mean of 15.0°C among all sites. Due to the effect of thermal effluent, water temperature at HSW site was sustained at high level during the study period from 17.5°C (January) to 28.8°C (September) with a mean of 24.2±3.7°C, which was significantly higher than other sites. Thermal wastewater effluent also brought in high concentration of nutrients (N, P). The effect of TWE was particularly apparent during dry season and low temperature period (December~March). Temperature effect of TWE did not last toward downstream, while nutrient effect seemed to maintain in longer distance. pH ranged 5.1~8.4 with a mean of 6.9 among all sites during the study period. The pH decrease was attributed to seasonal acid rain and snow fall, and their effects was identified by acidophilic diatoms dominated mainly by Eunotia pectinalis and Tabellaria flocculosa during March and August. These findings indicated that water quality and periphyton assemblages in the upstream region of Buso Stream were affected by thermal pollution, eutrophication, and acidification, and their confounding effects were seasonally variable.
        5,500원
        207.
        2017.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A black nickel oxide powder, one of the commercial nickel oxide ores, was reduced by hydrogen gas in a batchtype fluidized-bed reactor in a temperature range of 350 to 500 oC and in a residence time range of 5 to 120 min. The hydrogen reduction behavior of the black nickel oxide was found to be somewhat different from that of green nickel oxide ore. For the black nickel oxide, the maximum temperature (below which nickel oxide particles can be reduced without any agglomeration) was significantly lower than that observed for the green nickel oxide. In addition, the best curve fittings of the Avrami model were obtained at higher values of the overall rate constant “k” and at lower values of the exponent “m”, compared to those values for the green nickel oxide. It may be inferred from these results that the hydrogen reduction rate of the black nickel oxide is faster than that of the green nickel oxide in the early stages, but the situation reverses in the later stages. For the black nickel oxide ore, in spite of the low temperature sintering, it was possible to achieve a high degree fluidized-bed reduction at lower temperatures and at lower gas consumption rates than was possible for the green nickel oxide. In this regard, the use of black nickel oxide is expected to yield a benefit if its ore price is sufficiently lower than that of the green nickel oxide.
        4,000원
        208.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to evaluate the protective effect of PineXol® on H2O2-induced cell death in SK-N-MC cells, and in early stage focal ischemia rodent model. SK-N-MC cells were pre-treated with 200 μM H2O2 or various concentrations of PineXol® (10, 30, and 50 pg/mL) for 24 h, and then exposed to H2O2 for 3 h. Cell death was assessed by the CCK-8 assay, reactive oxygen species (ROS) assay, and lactate and dehydrogenase (LDH) release assay. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) expressions were also analyzed by western blotting. Focal ischemia rodent model was used as the in vivo model, and different concentrations of PineXol® (1, 10, and 100 mg/kg) were administered. One week after administration, reduction of infarct volume was analyzed by TTC staining. Cell viability of H2O2-treated SK-N-MC cells significantly increased by pre-treatment of PineXol® (p<0.05). PineXol® pre-treatment also induced significant decrease of ROS and LDH expressions. However, PineXol® did not affect the infarct volume. These results suggest that PineXol® has significant neuroprotective effect in vitro, but statistical significance was not confirmed in the in vivo focal ischemia mo
        4,000원
        209.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        실리콘 폼은 고성능 가스켓, 열 차폐, 진동 마운트 및 Enter 키 패드로 많은 산업 분야에서 난연성 소재로서 매우 유용하다. 실리콘 발포체는 실온에서 백금 촉매 및 무기필러 존재하에서 비닐기를 함유한 폴리실록산 (V-silicone) 및 수산기를 함유한 폴리실록산 (OH-silicone)과 하이드라이드를 함유 한 폴리실록산 (H-silicone)의 수소와의 수소축합반응의해 가교와 발포를 동시에 일으켜 제조하였다. 이 러한 방법은 종래의 발포와 경화를 각각 실시한 공정보다 매우 편리한 방법이다. 이 실험에 사용 된 기 능성 실리콘수지들은 1.0 meq/g의 vinyl기를 가진 점도 20 Pa-s의 V-silicone과 0.4 meq/g의 수산기를 가진 점도 50 Pa-s의 OH-silicone 및 7.5 meq/g의 하이드라이드기를 함유한 점도 0.06 Pa.s.의 H-silicone으로 구성되어 있다. 본 연구에서는 실리콘의 종류 및 함량, 촉매, 충전제 등의 변화에 따른 실리콘수지 발포체의 구조 및 기계적 특성에 미치는 영향을 연구하였다.백금 촉매는 실리콘 수지에 대하여 0.5 wt%이면 충분하였다. 낮은 점도의 OH-silicone의 첨가는 초 기 발포 속도를 높이며 발포체 밀도는 감소시키지만, 낮은 점도의 V-silicone의 첨가는, 인장 강도뿐만 아니라 신율도 감소시킨다. SF-3 조건에서 얻은 실리콘수지 발포체의 밀도, 인장강도 및 신율을 각각 0.58 g/cm3, 3.51 kgf/cm2 및 176 %를 얻을 수 있었다. 본 발포 시스템에서의 알루미나 충전재 역시 실리콘수지 발포체의 기계적 특성을 향상시키는 중요한 역할을 하였다.
        4,200원
        210.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report on the fabrication and characterization of a novel Cu2O/CuO heterojunction structure with CuO nanorods embedded in Cu2O thin film as an efficient photocathode for photoelectrochemical (PEC) solar water splitting. A CuO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method; then, a Cu2O thin film was electrodeposited onto the CuO nanorod array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy, as well as Raman scattering. The PEC properties of the fabricated Cu2O/CuO heterojunction photocathode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the Cu2O/CuO photocathode was found to exhibit negligible dark current and high photocurrent density, e.g. −1.05 mA/cm2 at −0.6 V vs. Hg/HgCl2 in 1 mM Na2SO4 electrolyte, revealing the effective operation of the oxide heterostructure. The photocurrent conversion efficiency of the Cu2O/CuO photocathode was estimated to be 1.27% at −0.6 V vs. Hg/HgCl2. Moreover, the PEC current density versus time (J-T) profile measured at −0.5 V vs. Hg/HgCl2 on the Cu2O/CuO photocathode indicated a 3-fold increase in the photocurrent density compared to that of a simple Cu2O thin film photocathode. The improved PEC performance was attributed to a certain synergistic effect of the bilayer heterostructure on the light absorption and electron-hole recombination processes.
        4,000원
        212.
        2016.11 구독 인증기관·개인회원 무료
        Membrane based water and wastewater treatment becomes more and more popular; however, membrane fouling is still a critical obstacle for its extensive use. Most of the membranes being used are polymeric and have limitations in physical, chemical, and thermal stability, even though various novel materials were introduced. In this study, metal membranes were fabricated to solve those weak points of polymeric membranes. We evaluated the physical properties of a metal membrane, such as pore size distribution, surface morphology, and water flux, and finally used the membrane for electrochemical oxidation of municipal wastewater with simultaneous hydrogen fuel generation. The metal membrane removed 50-70% of the feed organic matter by electrochemical oxidation; 10-30 % removal by electrochemical oxidation plus 40% by membrane rejection.
        214.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydrogen sulfide (H2S) emitted from various sources is a major odorous compound, and non-thermal plasma (NP) has emerged as a promising technique to eliminate H2S. This study was conducted to investigate lab-scale and pilot-scale NP reactors using corona discharge for the removal of H2S, and the effects of relative humidity, applied electrical power on reactor performance and ozone generation were determined. A gas stream containing H2S was injected to the lab-scale NP reactor, and the changes in H2S and ozone concentration were monitored. In the pilotscale NP experiment, the inlet concentration and flow rate were modified to determine the effect of relative humidity and applied power on the NP performance. In the lab-scale NP experiments, H2S removal was found to be the 1st-order reaction in the presence of ozone. On the other hand, when plasma reaction and ozone generation were initiated after H2S was introduced, the H2S oxidation followed the 0th-order kinetics. The ratio of indirect oxidation by ozone to the overall H2S removal was evaluated using two different experimental findings, indicating that approximately 70% of the overall H2S elimination was accounted for by the indirect oxidation. The pilotscale NP experiments showed that H2S introduced to the reactor was completely removed at low flow rates, and approximately 90% of H2S was eliminated at the gas flow rate of 15 m3/min. Furthermore, the elimination capacity of the pilot-scale NP was 3.4 g/m3·min for the removal of H2S at various inlet concentrations. Finally, the experimental results obtained from both the lab-scale and the pilot-scale reactor operations indicated that the H2S mass removal was proportional to the applied electrical power, and average H2S masses removed per unit electrical power were calculated to be 358 and 348 mg-H2S/kW in the lab-scale and the pilot-scale reactors, respectively. To optimize energy efficiency and prevent the generation of excessive ozone, an appropriate operating time of the NP reactor must be determined.
        4,000원
        215.
        2016.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The hydrogen embrittlement of two austenitic high-manganese steels was investigated using tensile testing under high-pressure gaseous hydrogen. The test results were compared with those of different kinds of austenitic alloys containing Ni, Mn, and N in terms of stress and ductility. It was found that the ultimate tensile stress and ductility were more remarkably decreased under high-pressure gaseous hydrogen than under high-pressure gaseous argon, unlike the yield stress. In the specimens tested under high-pressure gaseous hydrogen, transgranular fractures were usually observed together with intergranular cracking near the fracture surface, whereas in those samples tested under high-pressure gaseous argon, ductile fractures mostly occurred. The austenitic high-manganese steels showed a relatively lower resistance to hydrogen embrittlement than did those with larger amounts of Ni because the formation of deformation twins or microbands in austenitic highmanganese steels probably promoted planar slip, which is associated with localized deformation due to gaseous hydrogen.
        4,000원
        216.
        2016.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Three kinds of porous polymer were synthesized using a solvothermal of tri-4,4’- diphenylmethane diisocyanate (MDI-trimer) and different diamino monomers. The effects of the synthesis conditions and the monomer selection on the synthesis of porous polymer properties were studied. The results show that the synthesis of NH2-containing monomer molecules smaller the microporous polymers was easy to implement; the specific surface areas of the polymers are related to the monomer ratio and the reaction time. The results show that the synthesized porous polymer had good hydrogen storage performance; the hydrogen storage ability improved with the addition of heterocyclic nitrogen.
        4,000원
        217.
        2016.05 구독 인증기관·개인회원 무료
        범세계적인 온실가스저감 노력이 활발하게 움직이고 있다. 이러한 현상은 수송분야에서 친환경자동차 보급이라는 전략으로 이루어지고 있다. 친환경자동차 중 수소연료전지차는 수소라는 신에너지를 활용하는 자동차로 친환경차 중 유일하게 전기를 생산히야 모터를 구동하는 자동차이다. 수소연료전지차는 수소와 공기를 사용하기 때문에 청정하다는 이로운 점도 있지만 아직은 해결해야할 다양한 문제점을 가지고 있다. 수소연료전지차에서 전기를 생산하는 스택 내 부품 중 전해질 막은 수소이온을 전달하고 생성된 물을 활용하는데 매우 중요한 역할을 하고 있으나 불순물, 온도변화, 부하운전, 가습조건 등 다양한 자동차 환경에서 열화가 발생한다. 전해질 막 연구에 있어 자동차 운전환경에서 나타나는 열화 현상과 발생 가능성 및 해결방안에 대한 고찰을 하였다.
        218.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The recent rise in applications of thermoelectric materials has attracted interest in studies toward the fabrication of thermoelectric materials using mass production techniques. In this study, we successfully fabricate n-type Bi2Te2.7Se0.3 material by a combination of mass production powder metallurgy techniques, gas atomization, and spark plasma sintering. In addition, to examine the effects of hydrogen reduction in the microstructure, the thermoelectric and mechanical properties are measured and analyzed. Here, almost 60% of the oxygen content of the powder are eliminated after hydrogen reduction for 4 h at 360°C. Micrographs of the powder show that the reduced powder had a comparatively clean surface and larger grain sizes than unreduced powder. The density of the consolidated bulk using as-atomized powder and reduced atomized powder exceeds 99%. The thermoelectric power factor of the sample prepared by reduction of powder is 20% better than that of the sample prepared using unreduced powder.
        4,000원
        219.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        고분자전해질막은 전극 이외에 전기 화학 연료전지의 성능을 결정하는 중요한 요소이다. 고분자전해질막은 가스나 양성자 등의 작은 분자를 선택적으로 수송해야 한다. 고분자전해질막을 투과한 가스는 급속히 전기 화학적 환원을 발생시켜 음극 촉매의 열화를 유발하기 때문에 수소 장벽으로 작동해야 하며 가능한 한 빨리 양성자를 이동시켜야 한다. 지금까지 고분자전해질막의 수소 기체 투과도를 측정하는데 한정된 방법(예 : Constant volume/variable pressure (Time-lag)법)을 사용 했다. 그러나 측정의 대부분은 고분자전해질막은 건조된 진공 하에서 이루어진다. 그렇지 않으면 얻어진 수소 투과도는 측정 오차가 커지는 원인이 되기 쉽다. 이 연구에서는 일반적으로 고분자전해질막으로 사용되는 Nafion212의 수소 가스 투과 특성을 온도와 습도가 동시에 제어되는 in-situ 측정 시스템을 이용하여 평가하였다.
        4,000원