검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 144

        41.
        2008.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This article presents the challenges toward the successful consolidation of nanopowder using magnetic pulsed compaction (MPC). In this research the ultrafine-structured bulks have been fabricated by the combined application of magnetic pulsed compaction (MPC) and subsequent sintering, and their properties were investigated. The obtained density of bulk prepared by the combined processes was increased with increasing MPC pressure from 0.5 to 1.25 GPa. Relatively higher hardness and fracture toughness in the MPCed specimen at 1.25 GPa were attributed to the retention of the nanostructure in the consolidated bulk without cracks. The higher fracture toughness could be attributed to the crack deflection by homogeneous distribution and the retention of nanostructure, regardless of the presence of porosities. In addition, the as consolidated bulk using magnetic pulsed compaction showed enhanced breakdown voltage.
        4,000원
        42.
        2008.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic (EM) wave absorption properties with a variation of crystallization annealing temperature have been investigated in a sheet-type absorber using the alloy powder. With increasing the annealing temperature the complex permeability (), permittivity () and power absorption changed. The EM wave absorber shows the maximum permeability and permittivity after the annealing at for 1 hour, and its calculated power absorption is above 80% of input power in the frequency range over 1.5 GHz.
        4,000원
        43.
        2007.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, a rapid increase in demands for the soft magnetic composite parts has been created and it has been tried to improve their properties by various processing methods, alloying elements and compaction parameters. Warm compaction method has been used for the reduction of residual stress, the improvement of magnetic properties and the higher densities. In this work, the effects of warm compaction and polymer binder on magnetic properties of Fe powder core were investigated. The sintering powder, Fe oxide, was ball-milled for 30n hours. And then ball-milled Fe oxide powder was reduced through hydrogen reduction process. The hydrogen reduced Fe powder and polymer binder were mixed by 3-D turbular mixer. And then the mixed powder was warm-compacted. The magnetic properties such as core loss and permeability were measured by B-H curve analyzer.
        4,000원
        44.
        2007.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic wave (EM) absorption properties of various particle size have been investigated in a sheet-type absorber using the alloy powder. With decreasing the average particle size, the complex permeability () and permittivity () increased and the matching frequency is shifted toward lower frequency. The fabricated EM wave absorbers showed permeability , permittivity for a mesh sample, and the calculated power absorption was as high as 80% in the frequency range over 2 GHz.
        3,000원
        46.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An electromagnetic properties in BiSrCaCuO superconductor were studied. In the measurement of current-voltage properties, the voltage was measured when applying an external magnetic field. The voltage continues to appear after the removal of the magnetic field. This phenomenon was considered as a nonvolatile magnetic effect. The voltage increased with the applied magnetic flux, but it became constant at about T. The appearance of the voltage was ascribed to the trapping of magnetic flux.
        4,000원
        47.
        2006.09 구독 인증기관·개인회원 무료
        Innovative SMC with low iron loss was made from iron powders with evaporated MgO insulation coating. The coating had greater heat-resistance than conventional phosphatic insulation coating, which enabled stress relieving annealing at higher temperature. Magnetic properties of toroidal samples (OD35mm,ID25mm, t5) were examined. The iron loss at 50Hz for Bm = 1.5T was lower 50% of conventional SMC and was almost the same with silicon iron laminations(t0.35). It became clear that MgO insulation coating has enough heat resistance and adhesiveness to powdersurface to obtain innovative SMC with low iron loss.
        48.
        2006.09 구독 인증기관·개인회원 무료
        [ ] nanocomposite powders with a nominal composition of were prepared by HDDR combined with mechanical milling. The microstructure was studied by Mossbauer spectrometry and TEM. The magnetic properties were investigated by VSM using bonded magnet samples. The results showed that the annealing temperature had significant influence on both the recombination kinetics and the grain size of the and phases, and the bonded magnets presented the best magnetic properties when the nanocomposite powders were prepared by annealing at for 30 min.
        51.
        2006.09 구독 인증기관·개인회원 무료
        Eventhough Fe-6.5 wt.% Si alloy shows excellent magnetic properties, magnetic components made of the alloy are not totally because of its extremely low ductility. In order to overcome this demerit of alloy, 6.7 wt.% Si alloy powders were produced by gas atomization and then post-processed to form magnetic cores. By doing so, the total core loss could be minimized by reducing both hysteresis and eddy current loss. From our experiments, we were able to achive a core loss of at 0.1 T and 50 kHz through proper processes and a permeability of 68 at low frequency.
        53.
        2006.09 구독 인증기관·개인회원 무료
        Magnetic Properties of dust cores made of mixtures of atomized pure iron powder and pure alumina powder has been investigated in the temperature range from 673 to 1073K. The effect of annealing on coercivity has been positive effect up to 973K and thus coercivity is gradually reduced form 280A/m (as-compressed) to 160A/m (973K). However, dust cores annealed at 1073K displayed a 15% increasing of coercivity by annealing at 973K. Hysteresis loss shows a tendency similar to coercivity. Microstructure observation of specimens shows grain refinement by recrystallization in the temperature range from 773 to 1073K.
        54.
        2006.09 구독 인증기관·개인회원 무료
        Influences of machining on magnetic properties of soft magnetic composites (SMC's) with addition of two kinds of binder, i.e., organic binder and inorganic one, were investigated. Machining does not affect DC magnetic properties of the SMC compacts. This can be ascribed to their particular structure in which the ironpowder particles are highly isolated by the binder. On the other hand, decrease in resistivity and resultant increase in eddy current loss was confirmed in the machined compacts containing inorganic binder. It is supposed that the brittleadditive binder existing between the iron particles is partly broken, and iron-to-iron contact is formed on the machined surface.
        55.
        2006.09 구독 인증기관·개인회원 무료
        Addition of 2.0wt% or 0.3wt%Sn proved to be very effective in improving the permanent magnetic properties of NdFeNbB magnets. additions result in the increase in the Hci and temperature dependence due to formation of (NdDy)-rich phase and grain refinement of phase. This improvement of the coercivity stability of the magnets from the addition of Sn is attributed to the smoothing effect of the Sn addition at the grain boundaries. The magnetic properties, the temperature dependence and Curie temperature of NdFeNbB with and Sn combined addition were found to be considerably improved
        56.
        2006.09 구독 인증기관·개인회원 무료
        In this study, the pure iron powder was treated with aqueous phosphoric acid to produce phosphate insulating layer on the surface. After drying the powder, it was compacted in a mold with a diameter of 20mm at 800MPa. The powder compacts were then heat treated at for 1 hour. The results showed that insulated iron powder was obtained with uniform phosphate layer by chemical reaction. With increased amount of phosphate layer, the core loss and density of compacts were decreased. It was also found that the addition of ethyl alcohol during insulating reaction resulted in improved core loss value.
        57.
        2006.09 구독 인증기관·개인회원 무료
        An experiment was carried out to investigate the effect of Ba Stearate as a reducing agent on the magnetic and physical properties of anisotropic type ferrite magnets. It was found that the magnetic properties of were improved by adding 0.3 wt% of Ba Stearate, 0.5 wt% of , and 0.5 wt% of CaO together. The optimum conditions for making magnets were as follows; semisintering condition: h in nitrogen gas atmosphere, drying condition: h in air, sintering condition: h in nitrogen gas atmosphere. Magnetic and physical properties of a typical sample were = 0.46 T, = 0.43 T, = 182.3 kA/m, = 177.2 kA/m, = 33.8 kJ/, = and = and = 1332 kA/m.
        58.
        2006.09 구독 인증기관·개인회원 무료
        This research reports for the successful consolidation of Al2O3 powder with retained ultra-fine structure using MPC and sintering. Measurements in the consolidated Al2O3 bulk indicated that hardness, fracture toughenss, and breakdown voltage have been much improved relative to the conventional polycrystalline materials. Finally, optimization of the compaction parameters and sintering conditions will lead to the consolidation of Al2O3 nanopowder with higher density and even further enhanced mechanical properties.
        59.
        2006.09 구독 인증기관·개인회원 무료
        Fe-doped TiO2 nanopowders were prepared by mechanical alloying (MA) varying Fe contents up to 8.0 wt.%. The UV-vis absorption showed that the UV absorption for the Fe-doped powder shifted to a longer wavelength (red shift). The absorption threshold depends on the concentration of nano-size Fe dopant. As the Fe concentration increased up to 4 wt.%, the UV-vis absorption and the magnetization were increased. The benefical effect of Fe doping for photocatalysis and ferromagnetism had the critical dopant concentration of 4 wt.%. Based on the UV absorption and magnetization, the dopant level is localized to the valence band of TiO2.
        60.
        2006.09 구독 인증기관·개인회원 무료
        The magnetic inductance of nanocrystalline Fe73Si16B7Nb3Cu1 and an amorphous FeSiB powder sheet has been investigated to identify RFID performance. The powder was mixed with binder and solvent and tape-casted to form films. Results show annealing significantly influenced on the inductance of the material. The surface oxidation of the particles was the main reason for the reduced inductance. The maximum inductance of Fe73Si16B7Nb3Cu1 alloy was about 88μH at 17.4 MHz, about 65% greater compared to the FeSiB alloy. The higher inductance in the nanocrystalline alloy indicates it may be used as a potential replacement of current RFID materials.
        1 2 3 4 5